
AlpineBits®

DestinationData 2022-04

AlpineBits® is an interface specification for exchanging data in the tourism sector, specially tailored
for alpine tourism.

AlpineBits® DestinationData specifies a REST API for exchanging destination data based on the
AlpineBits® DestinationData Ontology. The API is build upon JSON:API v1.0 designed to support the

client-server communication model, with a focus on system-to-system communication.

©AlpineBits Alliance
This document is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported Licence.

Permissions beyond the scope of the license may be available at www.alpinebits.org.

AlpineBits Alliance | Bozner Straße Nr. 63/A | I-39057 Frangart – Eppan an der Weinstrasse | VAT ID IT02797280217 | www.alpinebits.org

Table of Contents

1. Introduction 3

1.1. Conventions and Definitions 3

2. The AlpineBits® DestinationData Ontology 4

2.1. Modeling Language: OntoUML 4

2.2. Ontology Description 5

2.2.1. Categories and Features 6

2.2.2. Agent 7

2.2.3. Media Object 8

2.2.4. Place 9

2.2.5. Event, Event Series and Venue 10

2.2.6. Mountain Areas 12

2.2.7. Trails and Lifts 12

2.2.8. Snow Measurement 13

3. API Architecture 15

3.1. SERVER and CLIENT Responsibilities 15

3.2. Messages 15

3.2.1. Request Messages 15

3.2.2. Success Messages 16

3.2.3. Error Messages 17

3.3. Authentication 19

3.4. Hypermedia Controls 20

3.4.1. Action Discovery 21

4. Requests and Responses 23

4.1. Resource Retrieval 23

4.1.1. Pagination 23

4.1.2. Sorting 25

4.1.3. Random sorting 26

4.1.4. Filtering 27

4.1.5. Searching 31

4.1.6. Sparse Fieldsets 32

4.1.7. Inclusion of Related Resources 34

4.2. Resource Creation 35

4.3. Resource Update 37

4.4. Resource Deletion 39

5. Routes 41

5.1. Base Route 41

5.2. Version Routes 42

5.3. Resource Routes 43

5.3.1. Agent Routes 43

5.3.2. Category Routes 43

5.3.3. Event Routes 44

5.3.4. Event Series Routes 45

5.3.5. Feature Routes 46

5.3.6. Lift Routes 47

5.3.7. Media Object Routes 48

5.3.8. Mountain Area Routes 48

5.3.9. Ski Slope Routes 49

5.3.10. Snowpark Routes 50

5.3.11. Venue Routes 51

6. Datatypes 52

6.1. address 52

6.2. contact point 53

6.3. date 55

6.4. date-time 56

6.5. email 56

6.6. geometry 56

6.6.1. point 56

6.6.2. multi-point 56

6.6.3. line-string 57

6.6.4. multi-line-string 57

6.6.5. polygon 58

6.6.6. multi-polygon 59

6.7. hours specification 60

6.8. snow condition 63

6.9. text 64

6.10. time 65

6.11. url 65

7. Resources 66

7.1. Basic Resource Schema 66

7.1.1. Basic Fields 66

7.1.2. Meta Object 67

7.1.3. Attributes Object 68

7.1.4. Relationships Object 69

7.1.5. Links Object 72

7.2. Resource Schemas 72

7.2.1. Agents 72

7.2.2. Categories 77

7.2.3. Events 81

7.2.4. Event Series 88

7.2.5. Features 91

7.2.6. Lifts 96

7.2.7. Media Objects 102

7.2.8. Mountain Areas 106

7.2.9. Ski Slopes 114

7.2.10. Snowparks 120

7.2.11. Venues 126

Appendix A: AlpineBits® DestinationData developer resources 130

Disclaimer

This specification is distributed in the hope that it will be useful but WITHOUT ANY WARRANTY.

If you find errors or have proposals for enhancements, do not hesitate to contact us by creating an issue

on the public GitLab repository: https://gitlab.com/alpinebits/destinationdata/standard-specification.

About the AlpineBits Alliance

The "AlpineBits Alliance" is a group of SME operating in the touristic sector working together to innovate

and open the data exchange in the alpine tourism, and therefore to optimize the online presence, sales

and marketing efforts of the hotels, other accommodations and destinations in the alpine territory and

also worldwide.

AlpineBits Alliance

Via Bolzano 63/A

39057 Frangarto / Appiano s.s.d.v. (BZ) - ITALY

VAT Reg No: IT02797280217

https://www.alpinebits.org

info@alpinebits.org

AlpineBits Alliance Members

ADDITIVE OHG - https://www.additive.eu

Altea Software Srl - http://www.altea.it

aries.creative KG - http://www.ariescreative.com

ASA OHG - http://www.asaon.com

Brandnamic GmbH - http://www.brandnamic.com

Consisto Arl - https://www.consisto.it

Destination Srl - http://www.destinationsrl.it

GardenaNet snc - http://www.gardena.net

Giggle GmbH - https://giggle.tips

HGV - http://www.hgv.it

IDM Südtirol - Alto Adige - http://www.idm-suedtirol.com

Internet Consulting GmbH - https://www.internet-consulting.it

Internet Service GmbH - http://www.internetservice.it

LTS - http://www.lts.it

Marketing Factory GmbH - http://www.marketingfactory.it

NOI Techpark - https://noi.bz.it

Outdooractive GmbH - https://corporate.outdooractive.com

PCS Hotelsoftware GmbH - http://www.pcs-phoenix.com

Peer GmbH - http://www.peer.biz

Schneemenschen GmbH - http://www.schneemenschen.de

SiMedia GmbH - http://www.simedia.com

Südtiroler Bauernbund - www.sbb.it

XLbit snc - http://www.xlbit.com

Yanovis - http://www.yanovis.com

Authors of this document:

AlpineBits® DestinationData repository contributors - https://gitlab.com/alpinebits/destinationdata/

standard-specification

This document has been produced in collaboration with the Conceptual and Cognitive Modelling

Research Group (CORE) of the Free University of Bozen-Bolzano.

AlpineBits® DestinationData 2022-04 page 1 of 130

https://gitlab.com/alpinebits/destinationdata/standard-specification
https://www.alpinebits.org
mailto:info@alpinebits.org
https://www.additive.eu
http://www.altea.it
http://www.ariescreative.com
http://www.asaon.com
http://www.brandnamic.com
https://www.consisto.it
http://www.destinationsrl.it
http://www.gardena.net
https://giggle.tips
http://www.hgv.it
http://www.idm-suedtirol.com
https://www.internet-consulting.it
http://www.internetservice.it
http://www.lts.it
http://www.marketingfactory.it
https://noi.bz.it
https://corporate.outdooractive.com
http://www.pcs-phoenix.com
http://www.peer.biz
http://www.schneemenschen.de
http://www.simedia.com
http://www.xlbit.com
http://www.yanovis.com
https://gitlab.com/alpinebits/destinationdata/standard-specification
https://gitlab.com/alpinebits/destinationdata/standard-specification
https://www.inf.unibz.it/krdb/core/
https://www.inf.unibz.it/krdb/core/
https://www.unibz.it/

Document Change Log

Important note: make sure to have the latest version of this document! The latest version is available at

https://www.alpinebits.org.

Protocol
version

Doc. release
date

Description

2022-04 2022-04-30 This release contains the following improvements:

• Added resource creation specification

• Added resource update specification

• Added resource deletion specification

• Added support to virtual and hybrid events

• Updated licensing information on mediaObjects resources with the

replacement of the copyrightOwner relationship with

licenseHolder and introduction of the author attribute

• Improvement of the definition of the dataProvider field on the meta of

any resource

• Improvement of the definition of the editions and series
relationships on events and eventSeries resources

• Improvement of the definition of the connections relationships on

lifts, mountainAreas, skiSlopes, and snowparks resources

• Improvement of the definitions of the ontology

• Updated list of HTTP status codes

• Re-structuring of chapter API Architecture into chapters API
Architecture, Requests and Responses, and Routes for

improved organization of contents

2021-04 2021-03-24 This release contains the following improvements:

• Added filtering specification

• Added searching specification

• Added sorting specification

• Added random sorting specification

• Added field selection specification

• New resource type: categories

• Transformed categories attribute into a relationship

• New resource type: features

• Transformed features attribute into a relationship

• Changed the versioning format of server routes

• Renamed the trails resource type to skiSlopes

• Improved guidelines on how to handle bad requests

• Added recommendation for server to provide OpenAPI-based

documentations

2020-04 2020-04-30 First release published.

AlpineBits® DestinationData 2022-04 page 2 of 130

https://www.alpinebits.org

1. Introduction

This document describes a standard for exchanging data in the tourism domain, called AlpineBits®

DestinationData, which is built upon:

• an OntoUML ontology that describes the conceptualization and scope of the standard;

• the REST architectural style;

• the JSON:API v1.0 specification for REST APIs that exchange JSON data through HTTP messages;

• HTTPS and basic authentication protocols for secure communication;

• the JSON Schema standard, draft 7 for message validation;

• the GeoJSON standard for JSON geospatial modelling; and

• Schema.org, used as an inspiration for designing resource types.

• the OpenAPI specification, recommended as an additional standard for documentation of server

implementations.

The AlpineBits® DestinationData standard was designed to support data exchange between systems

acting as CLIENTS and SERVER, where CLIENTS consume the data provided by SERVERS.

The AlpineBits® DestinationData standard defines:

• resource types

• server routes

• support to GET requests

• request and response headers and parameters

• additional request features (e.g., pagination and hypermedia controls)

The current version of the standard supports exchanging data about events, event series, event venues,

mountain areas, lifts, ski slopes, snowparks, agents, and media objects.

1.1. Conventions and Definitions

The keywords “MUST”, “MUST NOT”, “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD

NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described

in RFC 2119.

Additionally, the following terminology is consistently used throughout this document:

• CLIENT: a system that consumes data provided by a SERVER via HTTP requests

• SERVER: a system that stores and exposes data to CLIENTS in conformance with the AlpineBits®

DestinationData API.

• Resource Type: a set of attributes and relationships used to characterize resources

• Resource: an object with a persistent identifier that conforms to a resource type

• Endpoint: the trailing part of a URL that provides access to HTTP requests on an API

AlpineBits® DestinationData 2022-04 page 3 of 130

https://en.wikipedia.org/wiki/OntoUML
https://en.wikipedia.org/wiki/Representational_state_transfer
https://jsonapi.org/format/1.0/
https://en.wikipedia.org/wiki/HTTPS
https://en.wikipedia.org/wiki/Basic_access_authentication
https://json-schema.org/
https://tools.ietf.org/html/draft-handrews-json-schema-01
https://tools.ietf.org/html/rfc7946
https://en.wikipedia.org/wiki/Schema.org
https://www.openapis.org/
https://tools.ietf.org/html/rfc2119

2. The AlpineBits® DestinationData Ontology

The AlpineBits® DestinationData Ontology formalizes the worldview shared by AlpineBits members

over concepts of the tourism domain. It supports semantic interoperability between members through a

technology-agnostic conceptual model.

The ontology documents the members' agreement at the conceptual level and drives the development of

the AlpineBits® DestinationData, while the API specification documents their agreement at the

technological level is defined in the subsequent chapters.

A user of the AlpineBits® DestinationData may use this ontology as a reference to interpret the real-

world semantics of the data she will consume from a SERVER, thus avoiding interoperability issues.

2.1. Modeling Language: OntoUML

The AlpineBits® DestinationData Ontology is designed using the OntoUML, an ontologically well-

founded extension of the UML Class Diagram that can be used to represent a domain of interest from a

computationally independent perspective.

OntoUML consists of a set of stereotypes applicable to classes, associations, and attributes, with

precisely defined formal semantics derived from the Unified Foundational Ontology (UFO), an axiomatic

formal theory based on theories from analytic metaphysics, philosophical logic, cognitive psychology,

and linguistics.

An important meta-property of an OntoUML class stereotype is dubbed rigidity.

• A rigid class statically classifies its instances, i.e., an instance of a rigid class must instantiate it

throughout its whole existence. Examples include Person, Animal, Organization, Contract,

and Marriage.

• An anti-rigid class dynamically classifies its instances, i.e., an instance of an anti-rigid class at a

given point in time may cease to be so later on. Examples include Teenager, Adult, Student, and

Spouse.

Another fundamental meta-property for classes is sortality.

• a sortal class is one whose instances share a common identity principle, where the sortal class must

either provide this principle or inherit it from a superclass. Examples of classes that provide identity

principles include Person, House, and Car, and those that inherit such principles include Student,

Man, Adult, Town House, and Sports Car.

• a non-sortal class is one whose set of instances includes entities complying with different identity

principles. Examples include Agent, which classifies instances of sortal classes Person and

Organization, and Physical Object, which classifies instances of sortal classes Car and

House (among others).

The OntoUML class stereotypes used in the AlpineBits® DestinationData Ontology are:

• «kind»: a rigid sortal (identity provider) class that classifies object-like entities. Examples of typical

kinds include Person, Organization, Car, and House.

• «relator»: a rigid sortal (identity provider) class that classifies relational entities, also known as

relationships. Examples include Marriage, which relates two instances of Spouse; Contract,

which relates instances of Party in the context of formal agreements; and Enrollment, which

relates an instance of Student to an instance of Educational Institution.

• «quality»: a rigid sortal (identity provider) class that classifies entities that represent aspects of

other entities and are measurable in some value space (i.e., conceptual space). A quality may be

used to compare individuals, on the basis of the value it takes in a certain quality space (for example,

a mass in the kilogram scale, or a position within the RGB spectrum). Examples include Weight (as

in the weight of a person), Name (as in the name of an organization), Color (as in the color of a car),

and Duration (as in the duration of a concert).

AlpineBits® DestinationData 2022-04 page 4 of 130

https://en.wikipedia.org/wiki/OntoUML
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Upper_ontology#UFO_(Unified_Foundational_Ontology)

• «subkind»: a rigid sortal class that inherits its identity from another sortal. Examples of subkinds

include For-Profit Organization, Fiat 500, and Civil Marriage.

• «role»: an anti-rigid sortal class whose instantiation depends on a relational condition. Examples

include Student, Artist, and Legally Recognized Marriage.

• «phase»: an anti-rigid sortal class whose instantiation depends on a change in an intrinsic property.

For example, Child may be a subclass of Person whose instances are people up to 12 years old.

• «category»: a rigid non-sortal class that classifies entities of different sorts. Examples include

Agent, which classifies instances of both Person and Organization; and Animal, which

classifies instances of different species of animals, including Felis Catus (domestic cat), Canis
Lupus Familiaris (dog), and Panthera Leo (lion).

• «roleMixin»: an anti-rigid non-sortal class that classifies roles playable by individuals of different

sorts. Examples include Organizer, as the agent that organizes some event, and Author, as the

agent that holds the right to some intellectual property.

• «type»: a rigid class that classifies entities that have instances themselves (i.e., other classes).

Examples include Car Model, whose instances may include Fiat 500 and Tesla Model S; and

Event Type, whose instances may include Musical Event and Sports Event.

• «datatype»: a class that classifies values contained in a well-defined conceptual space, e.g.,

integer and real numbers (in their respective sets), Mass in Kilograms, and RGB Color.

• «enumeration»: a class that classifies values within a discrete finite conceptual space. Examples

include Day of Week, whose possible instances are the 7 days of the week; and Driver
License Category, whose possible instances are A, B, C, D, and E.

The OntoUML association stereotypes used in the AlpineBits® DestinationData Ontology are:

• «mediation»: an existential dependence relation that connects relators to the entities they bind.

For example, instances of the relator Marriage mediate instances of the class Spouse; instances

of the relator Contract mediate instances of the class Contract Party.

• «characterization»: an existential dependence relation that connects an aspect (e.g., a quality)

to the entity it characterizes. For example, instances of the class Color characterize instances of the

class Physical Object.

• «material»: a relation that connects entities based on something dependent on these entities. For

example, instances of the association "married with" connect instances of the class Spouse that

have a marriage relationship dependent on them.

• «componentOf»: a part-whole relation that connects objects with their functional components.

Examples include the composition relation between an instance of Car and the instance of Engine
installed on it; the relation between an instance of Human Body and an instance of Heart.

• «historicalDependence» a relation that binds entities because of an event that happened in the

past. For example, an instance of Place may be related through a historical dependence to an

instance of Image Object that is a representation of that place at a point in time.

• «instantiation»: a relation between two classes representing that instances of one may be

classified by instances of the other. For example, the relation between Car and Car Model, which

represents that every car is an instance of a car model.

2.2. Ontology Description

The figure below depicts the taxonomy of named entity defined by the AlpineBits® DestinationData

Ontology designed to represent the individuals and types present in the ontology’s domain:

AlpineBits® DestinationData 2022-04 page 5 of 130

All classes of entities characterized by description information in the AlpineBits® DestinationData

Ontology specialize Named Entity. Named Entity has the following properties: abstract, a short

description of the individual; description, a description of the individual more thorough than an

abstract; name, the name of the individual; short name, the short version of the name of the individual

(e.g., an abbreviation); url, a link that leads to additional information regarding the individual.

The additional classes of individuals and types in the figure above are described in the following

sections.

2.2.1. Categories and Features

A Category is a type that classifies entities in the tourism domain. Examples of categories include

"music event", which classifies the South Tyrol Jazz Festival 2018, and "public space", which classifies

the Piazza Walther Von der Vogelweide.

A Category may classify one or more Named Entities of different types. For instance, "music event"

classifies only instances of event plans, while "public space" classifies instances of venue and trail.

A Feature is an attraction or anything that can be present in a Named Entity in the tourism domain.

Examples of features include, "auditorium" as in venues that present some available auditorium, "food

and drinks" as in events that present food selling stations, or "parking space" for places that present a

dedicated parking area.

A Snowpark Feature is a snowpark-specific feature. Examples of snowpark features include "rail"

ands "ramp", these present in snowparks that enable the practice of special maneuvers in winter sports.

Categories and features can be organized into hierarchies where being an instance of a child category

implies being an instance of the parent category and presenting a child feature implies presenting a

parent feature. For example, an instance of the event plan category "conference" is also an instance of

its parent category "business event". Moreover, a venue that presents the feature "olympic size

AlpineBits® DestinationData 2022-04 page 6 of 130

swimming pool" also presents the its parent feature "swimming pool".

2.2.2. Agent

An individual who bears mental attitudes and is capable of performing actions and perceiving events.

An Agent is either a Person, such as Albert Einstein, Marie Curie, Lionel Messi, and Serena Williams,

or an Organization, such as Apple, Facebook, the AlpineBits Alliance, and the Free University of

Bozen-Bolzano.

An Agent can play several roles within the touristic domain, namely the Organizer, Sponsor,

Publisher, or Contributor of an event, the License Holder or the Author of a media object,

and the Area Owner of a mountain area.

A fragment of the ontology depicting Agent and its properties is presented below:

AlpineBits® DestinationData 2022-04 page 7 of 130

In addition to the attributes inherited from Named Entity, Agents have a property named contact
points, which identifies a list of Contact Points one can use to get in touch with an Agent.

A Contact Point informs how to contact an Agent, namely its email address, telephone number,

and physical address, but also when to do it by means of the available hours property.

Contact Point information is relevant for tourists who want to contact the owner of a mountain area to

know about its slopes conditions, or for customers who want to contact an event’s organizer about ticket

prices.

2.2.3. Media Object

An object that materializes creative works into a digital format to enable processing and sharing.

Three disjoint types of Media Objects are identified in the ontology, namely Audio Object, e.g. an

audio file containing a recording of a song, Image Object, e.g. an image file depicting a lift, and Video
Object, e.g. a video file containing a recording of a musical performance.

A fragment of the ontology depicting Media Object, its properties, and subtypes is shown below:

AlpineBits® DestinationData 2022-04 page 8 of 130

In addition to the attributes inherited from Named Entity, Media Object is characterized by

content type, which refers to the Media Types (formerly known as MIME Types) defined by the

Internet Assigned Numbers Authority (IANA).

A Media Object, or more precisely, the creative work embedded in it, can have its rights owned an by

agent, termed the License Holder. Apart from the license holder, a creative work can also have an

Author who may not hold the licensing right over its creation. Additionally, it may be available for reuse

by others according to a License Type, such as the Creative Commons 1.0 Universal.

A Media Object often depicts a Named Entity, such as events, event venues, lifts, ski slopes, and

snowparks. This depiction is captured in the ontology by means of the historical dependence between

Named Entity and Media Object.

2.2.4. Place

An individual that has a fixed physical location and can be localized within a Global Positioning System

(GPS) (adapted from Schema.org). Examples of places include a town square, a stadium, a ski slope, a

gas station, and a park.

A Place may go through two phases: In Operation and Permanently Closed. The first classifies

places that are functioning, regardless if they are currently open or not. The second classifies those that

have terminated its operations.

Place specializes Named Entity and thus, inherits all of its attributes.

Place is additionally characterized by the attributes address, how to arrive, and openingHours:

address represents the physical address of a place; how to arrive is a textual description on how to

arrive at a place; and opening hours identifies when a place is (or should be) open.

A Place may be physically connected to other places and give access to them. For instance, the

Falzeben Gondola at Merano 2000 gives access to the Falzeben I and Wallpach slopes. In the ontology,

this relation is captured by the connections self-type association defined for Place.

Notice, however, that the connection relation is non-symmetric in cases where two places are only

connected in one direction. For example, A Lift may give access to a Snowpark, but the Snowpark
(due to the descent, for instance) may not give access back to the Lift.

A fragment of the ontology centered around the Place concept, its properties, and subtypes is shown

below:

AlpineBits® DestinationData 2022-04 page 9 of 130

https://en.wikipedia.org/wiki/Media_type
https://creativecommons.org/publicdomain/zero/1.0/
https://schema.org/Place

The GPS information that can be associated to a Place is represented by means of the Geometry
quality, which is sub-classified into the following subtypes according to its geometrical shape: Point,

Multi Point, Line String, Multi Line String, Polygon, and Multi Polygon. Instances of

Geometry must instantiate exactly one of the aforementioned subtypes.

The coordinates attribute in the Geometry class is the list of points that compose the geometry.

2.2.5. Event, Event Series and Venue

An Event Plan is a plan established by one or more Organizers aiming some Target Audience
(adapted from the Core Public Event Vocabulary). Event Plans are planned to be held at some

particular date and time.

Examples include the Südtirol Jazz Festival 2018, the South Tyrol Free Software Conference organized

in 2019, the Bolzano Christmas Market of 2019, and a Serie A match between Juventus and Napoli.

In addition to the attributes inherited from Named Entity, an Event Plan has the attributes start
date, end date, in-person capacity, online capacity, participation url,

registration url, and recorded: a start date which describes when the event is planned to

start; an end date which describes when the event is planned to end; in-person capacity which

describes the event’s capacity for in-person attendance; online capacity which describes the

event’s capacity for virtual attendance; participation url which is the URL for virtual attendance in

the event; registration url which is the URL for registration to the event; and recorded which

describes whether the event is planned to be recorded.

Event Plans can be In-Person, Virtual, or Hybrid, depending on whether they participants are

planed to join the event in-person, virtually, or by either of these options.

In-Person Events and Hybrid Events happen at one or more places, which are dubbed its

Venues. For instance, the venue of Bolzano Christmas Market in 2019 was Piazza Walther.

Virtual Events and Hybrid Events are supported by one or more Streaming Platforms. For

instance, the South Tyrol Free Software Conference organized in 2021 was streamed to Element and

YouTube.

An Event Plan may involve several Agents, i.e. persons or organizations, in different ways. An

AlpineBits® DestinationData 2022-04 page 10 of 130

https://github.com/SEMICeu/Core-Public-Event-Vocabulary

Organizer plans the event and is legally responsible for it; the Publisher provides data about it; a

Sponsor supports its organization, usually by making financial contributions; and a Contributor
actively participates in the event, such as a presenter, a singer or an expositor.

Events may be composed of smaller events. For instance, the Südtirol Jazz Festival 2019 was

composed of over 30 individual concerts. This type of event is classified as a Composite Event in the

ontology, while those without sub-events are deemed Simple Events.

An Event Plan is in one of two phases, namely Published and Cancelled. The former refers to

those whose plans are or were valid, while the latter refers to those that have been canceled.

Many Event Plan Categories can classify Event Plans that share common characteristics they

identify, such as "music event" or "sports event".

Each Event Plan may of instantiate a special type of Event Plan Category called Event
Series. An Event Series is a kind of "template" for recurrent Event Plans that are referred to as

its editions. Examples include the Olympics, which is organized every 4 years, and the Bolzano

Christmas Market, which is organized every year, and the Food Truck Weekend, which is organized

sporadically in Trento.

It is not possible for an Event Plan and one of its parts to be editions of the same Event Series.

However, an Event Plan and its parts may be editions of distinct Event Series. For example, the

"South Tyrol Jazz Festival 2021" may be an edition of the "South Tyrol Jazz Festival" series, while the

presentation of "András Dés Rangers on 04/07/2021", its sub-event, may be an edition of the

"András Dés Rangers European Tour 2021".

The frequency in which an Event Series is organized is captured in the ontology by the homonymous

attribute.

A fragment of the ontology focused on the concepts of Event Plan, Event Series, and Venue is

shown below:

AlpineBits® DestinationData 2022-04 page 11 of 130

2.2.6. Mountain Areas

A Mountain Area is a geographical region in which alpine sports and activities can be performed, such

as skiing, snowboarding, climbing, and hiking.

Examples include Dolomiti Superski, located in South Tyrol, Italy, Zermatt Matterhorn, located in

Switzerland, and St. Anton Arlberg, located in Austria.

An excerpt of the ontology regarding Mountain Area its properties is shown below:

As a particular type of Place, Mountain Area inherits all of its attributes and relations, which includes

address and GPS-related properties.

Instances of Mountain Area are alpine regions that contain other places of interest, among which

instances of Lift and Trail are commonly found.

Mountain Areas may contain other mountain areas. This is the case of Dolomiti Superski and Ortler

Skiarena, which contain several smaller areas in South Tyrol. In such cases, the broader area contains,

by transitivity, every Lift and Trail within its contained areas.

Note, the composition of mountain areas is:

• irreflexive: an area cannot contain itself;

• transitive: if area X contains area Y and area Y contains area Z, then X contains area Z;

• antisymmetric: if area X contains area Y, area Y cannot contain area X.

A Mountain Area is usually owned by an organization. For instance, the Merano 2000 area is owned

by the Merano 2000 Funivie Spa organization.

2.2.7. Trails and Lifts

A Trail is a physical path where sporting activities can be performed. Trails are classified according to

the sports they afford, such as hiking trails, ski trails, and biking trails, which support hiking, skiing, and

AlpineBits® DestinationData 2022-04 page 12 of 130

biking respectively. This version of the standard distinguishes between two types of trails, namely Ski
Slope (aka ski trail) and Snowpark.

Trails are rated according to how challenging it is to practice a sport in them. This characteristic is

captured by means of a general Difficulty quality, which can be projected in different scales. For

instance, a Ski Slope’s `Difficulty can be valued according to the european or american

systems, as in the Falzeben I slope of the Merano 2000 area is rated blue (or easy) in the european

system.

A Ski Slope is a Trail, usually on a hill, where people can ski and snowboard.

A Snowpark is a Trail specially designed to allow skiers and snowboarders to perform freestyle tricks

by providing them with special features, such as jumps and rails.

A Lift is a machine designed to transport people uphill, often being used to transport skiers in

mountain areas. Lifts may be of several types, such as chairlifts, gondolas, and cableways.

A fragment of the ontology that formalizes Trail, Ski Slope, Snowpark, and Lift is presented

below:

2.2.8. Snow Measurement

A relevant piece of information for alpine tourists during the winter season is the snow condition of

mountain areas and ski slopes. This is captured in the ontology by means of the Snow Measurement
concept, a relator that describes the result of a measuring activity performed by an Agent, at a particular

Place, in a given point in time (date).

An excerpt of the ontology describing Snow Measurement is shown below:

AlpineBits® DestinationData 2022-04 page 13 of 130

Note that Snow Measurement specializes Geospatial Feature. This means that its instances may

be localized using GPS Geometries of any shape.

A Snow Measurement identifies the following descriptive properties:

• base snow: the height of snow in the vicinities of the measurement location

• base snow range: the variation of the base snow measurement in the vicinities of the

measurement location

• groomed: indicates whether or not the snow has been groomed in the vicinities of the measurement

location

• primary surface: the main type of snow found in the vicinities of the measurement location

• secondary surface: the secondary type of snow found in the vicinities of the measurement

location

• snow making: indicates whether or not the snow in the vicinities of the measurement location has

been artificially produced

• snow over night: the height of snow accumulated in the previous night in the vicinities of the

measurement location

• storm total: the height of snow accumulated from the last snowstorm in the vicinities of the

measurement location

AlpineBits® DestinationData 2022-04 page 14 of 130

3. API Architecture

AlpineBits® DestinationData specifies a REST API designed to support the client-server

communication model, with a focus on system-to-system communication.

This API is built upon JSON:API v1.0, a specification containing best practices for the implementation of

REST APIs that exchange JSON data over HTTP.

AlpineBits® DestinationData relies on its underlying transport protocol to take care of security issues.

Hence the use of HTTPS is REQUIRED.

3.1. SERVER and CLIENT Responsibilities

A SERVER MUST be able to handle GET requests on all routes it implements (see the standard’s list of

routes).

A SERVER MAY support POST, PATCH, and DELETE requests in order to provide provide resource

creation, update, and deletion by CLIENTS.

CLIENT and SERVER MUST observe the prescriptions of this standard when performing or responding

to the aforementioned requests, using the appropriate headers, message formats.

SERVERS are RECOMMENDED to document their own implementations of the AlpineBits®

DestinationData standard as OpenAPI-based documentations.

3.2. Messages

A message is a request sent from a CLIENT to a SERVER, or a response sent from a SERVER to a

CLIENT.

CLIENTS and SERVERS MUST include the header Content-Type: application/vnd.api+json
without any media type parameters to all messages that include a body. This requirement is designed to

accommodate future versions and extensions of JSON:API.

All data exchanged between CLIENTS and SERVERS MUST be in the JSON format conforming to the

JSON:API v1.0 standard.

All messages containing a body MUST be encoded in UTF-8.

Messages can be either request messages, success messages, or error messages. The remainder or

this section describes the details of each.

3.2.1. Request Messages

Requests sent from a CLIENT to a SERVER are referred to as request messages.

A CLIENT MUST include the header Accept: application/vnd.api+json at least once and

without any media type parameters in all requests to a SERVER to represent that the expected response

MUST be conformant to this standard.

A SERVER MAY support additional media types, such as application/json and

application/xml, but their adoption is not regulated by this standard.

GET /2022-04/events HTTP/1.1
Accept: application/vnd.api+json

GET /2022-04/events HTTP/1.1
Accept: application/vnd.api+json, application/vnd.api+json;modified-parameter=value,
application/json

Depending on the related request, a CLIENT MAY include a JSON body on a request message (see

AlpineBits® DestinationData 2022-04 page 15 of 130

https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://jsonapi.org/format/1.0/
https://www.openapis.org/
https://jsonapi.org/format/1.0/

Requests and Responses). This body MUST contain one of the following fields:

• data: an resource object the CLIENT wishes to create or update. This field MUST is present in

certain successful CLIENT requests and SERVER responses (see Requests and Responses).

When present, a CLIENT MAY include the following fields to a request message:

• jsonapi: an object describing the JSON:API v1.0 the message is complies to. This field is

OPTIONAL and, if set, it MUST be equal to the following object:

{
 "version": "1.0"
}

The examples below present the basic structure of a request message which varies according to the

context they are used, as described in Requests and Responses.

GET /2022-04/events HTTP/1.1
Accept: application/vnd.api+json

POST /2022-04/events HTTP/1.1
Content-Type: application/vnd.api+json

{
 "jsonapi": {
 "version": "1.0"
 },
 "data": {
 "id": ...,
 "type": "events",
 ...
 }
}

A CLIENT MUST NOT include additional fields in data messages, such as links, meta, or included.

A SERVER MUST reject requests including a body when it is not supported (see Requests and

Responses).

A SERVER SHOULD ignore additional fields sent by a CLIENT on a data message.

3.2.2. Success Messages

Successful responses sent from a SERVER to a CLIENT are referred to as success messages.

A success message header MUST contain an HTTP status code in the class 2xx Success, as in:

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

Depending on the related request, a SERVER MAY include a JSON body on a success message (see

Requests and Responses). This body MUST contain one of the following fields:

• data: a field containing the resource objects to be sent to the CLIENT. The data field MUST be

either:

◦ if the request expects a collection of resource objects in the response, the data field MUST be

an array that contains the expected resources or is empty

◦ if the request expects a single resource object in the response, the data field MUST be a single

resource object or null

AlpineBits® DestinationData 2022-04 page 16 of 130

https://tools.ietf.org/html/rfc7231#section-6.3

For details on the different types of resources in this standard and their inner structure, refer to

Resources.

• links: an object containing links for navigating the API. Examples of links include self-referencing

links, links to resources in relationships, pagination links (see Pagination), and hypermedia links (see

Hypermedia Controls).

Besides root of a message, the links object MUST also be present in the root of resource objects

and in relationships of resources when these are sent from a SERVER to a CLIENT. Refer to

Hypermedia Controls for more details.

• meta: an object containing the message’s metadata. Examples of metadata include the number of

resources available in a certain route (see the count and page fields in Pagination).

When present, a SERVER MAY include the following fields to a success message:

• jsonapi: an object describing the JSON:API v1.0 the message is complies to. This field is

OPTIONAL and, if set, it MUST be equal to the following object:

{
 "version": "1.0"
}

• included: an array of resource objects listed in selected relationships of the resources present in

the data field. This field is optional but non-nullable.

See Inclusion of Related Resources for more details on the resource inclusion feature.

Success messages SHALL NOT have fields in addition to those listed above.

The example below presents the basic structure of a success message from a SERVER to a CLIENT.

The structure of messages vary according to the context they are used, as described in Requests and

Responses.

{
 "jsonapi": {
 "version": "1.0"
 },
 "meta": { ... },
 "links": { ... },
 "data": [...],
 "included": [...]
}

A SERVER MUST reply with specific status codes in the following cases:

• 200 OK: when the CLIENT’s request has been successfully processed, with the exceptions of:

◦ creation requests

◦ deletion requests

• 201 Created: when the CLIENT’s creation request has been successfully processed

• 204 No Content: when the CLIENT’s deletion request has been successfully processed

3.2.3. Error Messages

An error message results from an unsuccessful request made to a SERVER, regardless of the different

contexts detailed in Requests and Responses.

An error message header MUST contain an HTTP status code either in the class Client Error 4xx or the

class Server Error 5xx, as in:

AlpineBits® DestinationData 2022-04 page 17 of 130

https://tools.ietf.org/html/rfc7231#section-6.5
https://tools.ietf.org/html/rfc7231#section-6.6

HTTP/1.1 401 Unauthorized

If a request message results in multiple errors, the returned status code MUST be the most general

status code applicable. For example, if a request results in the errors 415 Unsupported Media Type
and 410 Gone, the header SHOULD contain the error code 400 Bad Request.

A SERVER MAY include a body in an error message. If it does, this body MUST contain one of the

following fields:

• errors: an array of error objects as defined in JSON:API v1.0. This field cannot be empty.

• links: an object containing links (see Hypermedia Controls). This field must contain a self link

contain the route present in the CLIENT’s.

When present, a SERVER MAY include the following fields to a error message:

• jsonapi: an object describing the JSON:API v1.0 the message is complies to. This field is

OPTIONAL and, if set, it MUST be equal to the following object:

{
 "version": "1.0"
}

• meta: an object that contains non-standard meta-information about its container. This field is

OPTIONAL but cannot be empty.

Error messages SHALL NOT have fields in addition to those listed above.

An overview of the basic structure of an error message body is depicted below:

{
 "jsonapi": {
 "version": "1.0"
 },
 "meta": { ... },
 "errors": [
 {
 "status": "404",
 "title": "Endpoint not available"
 }
],
 "links": { ... }
}

The following example presents an error message (header and body) containing multiple error objects.

AlpineBits® DestinationData 2022-04 page 18 of 130

https://jsonapi.org/format/1.0/#error-objects

HTTP/1.1 404 Not Found
Content-Type: application/vnd.api+json

{
 "jsonapi": {
 "version": "1.0"
 },
 "errors": [
 {
 "status": 404,
 "title": "Resource not found."
 },
 {
 "status": 405,
 "title": "Method not supported."
 }
]
}

A SERVER MUST reply with specific status codes in the following cases:

• 400 Bad Request: when a CLIENT makes a request containing:

◦ a method body when it is not supposed to (see Requests and Responses)

◦ a query parameter not defined in this standard

◦ a query parameter not supported for the specific request

◦ a query parameter with an incorrect value

◦ conflicting query parameters

◦ a method that does not comply the standard’s definitions

◦ a method that requests the creation of a resource with an id that is already used or malformed

◦ a creation or update of a resources' relationship referring to a resource that does not exist

• 401 Unauthorized: when a CLIENT makes a request:

◦ using an authentication method, but the credentials fail to be validated by the SERVER

◦ without an authentication method, but the SERVER does not accept such requests

• 404 Not Found: when a CLIENT makes a request:

◦ to an endpoint not defined in this standard

◦ to a non-implemented endpoint

◦ asking for a non-existing resource

◦ asking for a non-existing page number

• 405 Method Not Allowed: when a CLIENT makes a request using an HTTP method that is not

supported by the SERVER.

• 406 Not Acceptable: when a CLIENT makes a request with an Accept header containing a

media type not supported by the SERVER or with encoding parameters in

application/vnd.api+json.

3.3. Authentication

For authenticated requests, a SERVER MUST support authentication through the basic authentication

method. A SERVER MAY support additional authentication methods, such as, OAuth, JSON Web Token,

and OpenID Connect, as well as non-authenticated requests.

The following example presents the Authorization header of a request using basic authentication.

AlpineBits® DestinationData 2022-04 page 19 of 130

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/JSON_Web_Token
https://en.wikipedia.org/wiki/OpenID

GET /2022-04/events HTTP/1.1
Accept: application/vnd.api+json
Authorization: Basic Y2hyaXM6c2VjcmV0

In this example, the value of Authorization contains the string john:secret encoded in base64

(Y2hyaXM6c2VjcmV0), as specified in the basic authentication method.

If a SERVER does support authenticated requests, it MUST respond to unauthorized requests with the

401 Unauthorized status code (see Error Messages). If an error message body is included in the

response, the SERVER MAY use an error object to differentiate between requests that lack an

authorization header from those that contain invalid credentials.

HTTP/1.1 401 Unauthorized
Content-Type: application/vnd.api+json

{
 "error": [{
 "status": "401",
 "title": "Unauthenticated request"
 }],
 ...
}

HTTP/1.1 401 Unauthorized
Content-Type: application/vnd.api+json

{
 "error": [{
 "status": "401",
 "title": "Invalid credentials"
 }],
 ...
}

3.4. Hypermedia Controls

Hypermedia control is a strategy to encode resource navigation and manipulation within the messages

exchanged through an API.

The AlpineBits® DestinationData standard adopts the hypermedia strategy defined in JSON:API v1.0,

which is briefly described in the following paragraphs.

To provide hypermedia controls for CLIENTS to navigate the API, a SERVER MUST include a links
object according to what is defined in this standard.

A SERVER MUST include a links object with self link to the root of every message representing the

link used by CLIENT in the request that generates that response.

{
 "links": {
 "self": "www.example.com/2022-04/events?fields[events]=name,publisher",
 ...
 },
 "data": [...]
 ...
}

A SERVER MUST include a links object with self link to the root of every resource representing its

individual resource route (see Routes).

AlpineBits® DestinationData 2022-04 page 20 of 130

https://en.wikipedia.org/wiki/Base64

{
 "links": { ... },
 "data": [
 {
 "id": "123",
 "type": "events",
 "meta": { ... },
 "links": {
 "self": "www.example.com/2022-04/events/123",
 ...
 },
 "attributes": { ... },
 "relationships": { ... }
 },
 ...
]
 ...
}

A SERVER MUST include a links object with related link to every non-null relationship object

(alongside the data field) representing the resource relationship route where the related resource(s) are

available at (see Routes).

{
 "links": { ... },
 "data": [
 {
 "id": "123",
 "type": "events",
 "meta": { ... },
 "links": { ... },
 "attributes": { ... },
 "relationships": {
 "publisher": {
 "data": {
 "id": "456",
 "type": "agents"
 },
 "links": {
 "related": "www.example.com/2022-04/events/123/publisher"
 }
 },
 ...
 }
 },
 ...
]
 ...
}

A CLIENT SHOULD NOT include any links objects to its messages. A SERVER MUST ignore any

links objects in messages from CLIENTS.

3.4.1. Action Discovery

SERVERS that support additional HTTP methods SHOULD support action discovery.

To do so, a SERVER needs to:

• Support HEAD requests on all of its endpoints

• Answer HEAD requests with messages containing an Allow header listing the HTTP methods it

supports on the requested endpoint.

The following two snippets exemplify a HEAD request made by a CLIENT and its response sent by a

AlpineBits® DestinationData 2022-04 page 21 of 130

https://jsonapi.org/faq/#how-to-discover-resource-possible-actions

SERVER.

HEAD /2022-04/events HTTP/1.1
Host: https://example.com/
Authorization: Basic Y2hyaXM6c2VjcmV0

HTTP/1.1 200 OK
Allow: GET,POST,PATCH,DELETE

A response message to a HEAD request message does not contain a body.

AlpineBits® DestinationData 2022-04 page 22 of 130

4. Requests and Responses

This chapter defines the different interactions between CLIENTS and SERVERS for the creation,

retrieval, update, and deletion of data.

4.1. Resource Retrieval

A CLIENT MAY retrieve links and resource objects from a SERVER through an HTTP GET request. The

GET request MUST be performed on the route corresponding to the desired resource(s) (see Routes).

The following example demonstrates a GET request for the retrieval of resources available on the

events route (see Resource Routes), including also an authorization header.

GET /2022-04/events HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json
Authorization: Basic Y2hyaXM6c2VjcmV0

A CLIENT MUST NOT include a Content-Type header on retrieval requests. A CLIENT MUST NOT

include a body on retrieval requests.

If a CLIENT’s retrieval request includes a body or includes invalid headers, the SERVER MUST respond

with the corresponding error code (see Error Messages).

If the route requested by a CLIENT on a retrieval request is implemented by a SERVER, it MUST

respond to successful requests with data corresponding available data. The SERVER response to a

successful request MUST include the status code 200 OK. The SERVER response to a successful

request MUST include the header Content-Type.

The example below demonstrates a valid request for the retrieval of a collection of agent resources (see

events).

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "jsonapi": { ... },
 "meta": { ... },
 "links": { ... },
 "data": [
 {
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
 }
]
}

The AlpineBits® DestinationData standard specifies a set of API features to be implemented by a

SERVER. These features are intended to make data retrieval requests from CLIENTS to SERVERS

more effective and efficient (see Resource Retrieval).

The list of features is as follows: Pagination, Sorting, Random sorting, Filtering, Searching, Sparse

Fieldsets, and Inclusion of Related Resources.

4.1.1. Pagination

The pagination feature allows CLIENTS to request a subset of a resource collection.

AlpineBits® DestinationData 2022-04 page 23 of 130

https://jsonapi.org/format/1.0/#fetching-pagination

A SERVER MUST implement page-based pagination on retrieval requests for all resource collection

routes (see Routes).

The response message containing such a subset is called a page.

The pagination strategy adopted in this standard uses two parameters:

• page[size]: the number of resources included in a page.

• page[number]: the number of the page

The following request message exemplifies the use of pagination parameters:

GET /2022-04/events?page[size]=10&page[number]=2 HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

The request asks for the second page (page[number]=2) in the collection of event resources, divided

into pages containing 10 events each (page[size]=10).

A SERVER that implements pagination MUST:

• Be able to handle requests containing just a page[size] query parameter, just a page[number],

or both.

• Support pagination for GET requests in every base endpoint, such as /2022-04/events and

/2022-04/mountainAreas.

• Respond with the first page if no pagination parameters are sent in the request.

• In paginated responses, add the following fields to the links object in the message body:

◦ first: a string that represents the URL to request the first page of resources in that endpoint.

Non-nullable.

◦ last: a string that represents the URL to request the last page of resources in that endpoint.

Non-nullable.

◦ self: a string that represents the URL to request the current page of resources in that endpoint.

Non-nullable.

◦ next: a string that represents the URL to request the next page of resources in that endpoint.

The next URL MUST be the same as last in case the next page is out of bounds. Non-

nullable.

◦ prev: a string that represents the URL to request the previous page of resources in that

endpoint. The prev URL MUST be the same as first in case the previous page is out of

bounds. Non-nullable.

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "links": {
 "first": "https://example.com/2022-04/events?page[number]=1",
 "last": "https://example.com/2022-04/events?page[number]=100",
 "self": "https://example.com/2022-04/events?page[number]=2",
 "next": "https://example.com/2022-04/events?page[number]=3",
 "prev": "https://example.com/2022-04/events?page[number]=1"
 },
 ...
}

• In paginated responses, add the following fields to the meta object in the message body:

◦ count: a number that indicates the number of resources available in the endpoint. Non-nullable.

◦ pages: a number that indicates the number of pages in the resource collection given the selected

AlpineBits® DestinationData 2022-04 page 24 of 130

page size. Non-nullable.

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "meta": {
 "count": 1000,
 "pages": 100
 },
 ...
}

• Respond a request for a non existing page with an error message whose status code is 404 Not
Found.

GET /2022-04/events?page[number]=10000 HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

HTTP/1.1 404 Not Found
Content-Type: application/vnd.api+json

A SERVER that implements pagination SHOULD:

• Define a default page size.

• Respond a request for a non existing page with an error message containing a body as follows:

GET /2022-04/events?page[number]=10000 HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

HTTP/1.1 404 Not Found
Content-Type: application/vnd.api+json

{
 "error": [
 {
 "status": "404",
 "title": "Page not found"
 }
],
 "links": {
 "self": "http://example.com/2022-04/events?page[number]=10000"
 }
}

4.1.2. Sorting

A SERVER SHOULD support requests to sort resource collections according to one or more criteria

(sort fields), as defined in the JSON:API v1.0 specification.

A SERVER that implements this feature MUST:

• Interpret the values of the sort query parameter as sort fields:

GET /2022-04/events?sort=name HTTP/1.1
Accept: application/vnd.api+json

AlpineBits® DestinationData 2022-04 page 25 of 130

https://jsonapi.org/format/#fetching-sorting

• Interpret a sort field to be ascending unless it is preceded by a minus (U+002D HYPHEN-MINUS, "-

"), in which case it MUST interpret it to be descending:

GET /2022-04/events?sort=-name HTTP/1.1
Accept: application/vnd.api+json

• Interpret a dot-separated (U+002E FULL-STOP, ".") sort field to be a request to sort by a relationship

or a nested attribute:

GET /2022-04/events?sort=organizer.name HTTP/1.1
Accept: application/vnd.api+json

• Respond with a 400 Bad Request if a request contains a sort field that is not supported by the

SERVER:

GET /2022-04/events?sort=hello HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/events?sort=hello",
 },
 "errors": [{
 "title": "Invalid query parameter value.",
 "status": 400
 }]
}

A SERVER that implements sorting SHOULD:

• Adopt sort fields that correspond to resource attributes:

GET /2022-04/events?sort=name HTTP/1.1
Accept: application/vnd.api+json

• Support sorting by combining multiple sort fields:

GET /2022-04/events?sort=name,startDate HTTP/1.1
Accept: application/vnd.api+json

A SERVER that implements sorting MAY:

• Adopt sort fields that do not correspond to resource attributes and relationships.

GET /2022-04/events?sort=date HTTP/1.1
Accept: application/vnd.api+json

4.1.3. Random sorting

A SERVER MAY support requests to randomly sort resource collections according to a seed value.

A SERVER that implements this feature MUST:

• Interpret the value of the random query parameter as the seed to be used to sort the resource

AlpineBits® DestinationData 2022-04 page 26 of 130

collection:

GET /2022-04/events?random=5 HTTP/1.1
Accept: application/vnd.api+json

• Always return resources in the same order for requests using a given seed value, provided

everything else remains the same (e.g. the resource collection, the page size, and the page number)

• Respond with a 400 Bad Request if a request combines a sort and a random query parameter:

GET /2022-04/events?random=5&sort=startDate HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/events?random=5&sort=startDate",
 },
 "errors": [{
 "title": "Request contains conflicting queries.",
 "status": 400
 }]
}

• Respond with a 400 Bad Request if a request includes a seed value that is not supported by the

SERVER:

GET /2022-04/events?random=hello HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/events?random=hello",
 },
 "errors": [{
 "title": "Invalid query parameter value.",
 "status": 400
 }]
}

A SERVER that implements random sorting SHOULD:

• Allow a CLIENT to combine random with every other query parameter defined in this document,

except for sort:

GET /2022-
04/events?random=12&fields[events]=name,startDate&page[size]=30&page[number]=2 HTTP/1.1
Accept: application/vnd.api+json

4.1.4. Filtering

A SERVER SHOULD support filtering over its resources.

This standard specifies two strategies for filtering, label-specific filters and simple generic

AlpineBits® DestinationData 2022-04 page 27 of 130

filters:

• Label-specific filter: the SERVER defines the name of each supported filter, its semantics,

and the values it may receive. Label-specifics filters MUST be defined as filter[FILTER-
NAME]=VALUES, where VALUES may be a list of comma-separated values.

For instance, a filter for resources updated after 01/01/2021 could be defined as follows:

GET /2022-04/events?filter[lastUpdate]=2021-01-01 HTTP/1.1
Accept: application/vnd.api+json

• Simple generic filter: this standard defines a list of generic filter operands, their semantics,

and the values it may receive. These filters are then requested over resources' fields following the

pattern filter[FIELD][OPERAND]=VALUES.

For instance, a request to retrieve events starting after 01/01/2021 is defined as follows.

GET /2022-04/events?filter[startDate][gt]=2021-01-01 HTTP/1.1
Accept: application/vnd.api+json

A SERVER is RECOMMENDED to support filtering over the following data:

• Last update

• Language

• Categories

• Date (events)

• Publisher (events)

• Location (geolocation or address based)

• Length (ski slopes, snowparks)

• Opening schedule - open at (places open on a certain date)

• Difficulty (ski slopes, snowparks)

• Snow conditions (mountain areas, snowparks)

• Area owner (mountain areas)

A SERVER MAY support multiple filters in a single request.

A SERVER MUST reply to requests with non-supported filters, field names, or values with 400 Bad
Request status code:

GET /2022-04/events?filter[foo]=bar HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json
{
 "links": {
 "self": "https://example.com/2022-04/events?filter[foo]=bar",
 },
 "errors": [{
 "title": "Invalid query parameter value.",
 "status": 400
 }]
}

A SERVER MAY support custom filters, i.e., those that are cannot be expressed as simple generic filters,

AlpineBits® DestinationData 2022-04 page 28 of 130

as label-specific filters: For example, a filter retrieves events "active" in between two dates:

+

GET /2022-04/events?filter[between]=2021-03-01,2021-03-10 HTTP/1.1
Accept: application/vnd.api+json

A SERVER SHOULD prefer simple generic filters over label specific filters.

A SERVER MAY support simple generic filters over nested fields. For example, a filter over the countries

in venues' addresses:

+

GET /2022-04/venues?filter[address.country][eq]=IT HTTP/1.1
Accept: application/vnd.api+json

The standard defines the following list of operands for simple generic filters:

• exists: filters resources that according to whether or not the field has values (i.e., it is not null).

Accepts as argument a single true or false value.

For example, filter event resources that have multimedia descriptions:

GET /2022-04/events?filter[multimediaDescriptions][exists]=true HTTP/1.1
Accept: application/vnd.api+json

• eq: filters resources that have the field assigned to a specific value. Accepts as argument a single

boolean, number, or string value.

For example, filter venue resources whose address has a specific country value:

GET /2022-04/venues?filter[address.country][eq]=IT HTTP/1.1
Accept: application/vnd.api+json

• neq: filters resources that have the field not assigned to a specific value. Accepts as argument a

single boolean, number, or string value.

For example, filter snowpark resources whose difficulty level is not "expert":

GET /2022-04/snowparks?filter[difficulty][neq]=expert HTTP/1.1
Accept: application/vnd.api+json

• in: filters resources that have the field assigned to values within a desired list. Accepts a list of

number or string arguments.

For example, filter snowpark resources whose difficulty is within the list ["beginner",
"intermediate"].

GET /2022-04/snowparks?filter[difficulty][in]=beginner,intermediate HTTP/1.1
Accept: application/vnd.api+json

• nin: filters resources that have the field not assigned to values within a desired list. Accepts a list of

number or string arguments.

For example, filter snowpark resources whose difficulty is not within the list ["advanced",
"expert"].

GET /2022-04/snowparks?filter[difficulty][nin]=advanced,expert HTTP/1.1
Accept: application/vnd.api+json

AlpineBits® DestinationData 2022-04 page 29 of 130

• any: filters resources that have some of the field’s values within a desired list. Accepts a list of

number or string arguments.

For example, filter event resources whose categories include some of the values in the list [
"schema:MusicEvent", "schema:SportsEvent"].

GET /2022-04/events?filter[categories][any]=schema:MusicEvent,schema:SportsEvent
HTTP/1.1
Accept: application/vnd.api+json

• all: filters resources that have all of the field’s values within a desired list. Accepts a list of number
or string arguments.

For example, filter event resources whose categories include some of the values in the list [
"schema:Festival", "schema:MusicEvent"].

GET /2022-04/events?filter[categories][any]=schema:Festival,schema:MusicEvent HTTP/1.1
Accept: application/vnd.api+json

• gt: filters resources that have the field assigned to a value greater than the desired one. Accepts as

argument a single number or string.

For example, retrieve agent resources that have their last update greater than a certain date-time:

GET /2022-04/agents?filter[lastUpdate][gt]=2022-04-01T00:00:00+0000 HTTP/1.1
Accept: application/vnd.api+json

• gte: filters resources that have the field assigned to a value greater than or equal to the desired one.

Accepts as argument a single number or string.

For example, retrieve agent resources that have their last update greater than or equal to a certain

date-time:

GET /2022-04/agents?filter[lastUpdate][gte]=2022-04-01T00:00:00+0000 HTTP/1.1
Accept: application/vnd.api+json

• lt: filters resources that have the field assigned to a value lower than the desired one. Accepts as

argument a single number or string.

For example, retrieve ski slope resources that have their length lower than a certain value:

GET /2022-04/skiSlopes?filter[length][lt]=5000 HTTP/1.1
Accept: application/vnd.api+json

• lte: filters resources that have the field assigned to a value lower than or equal to the desired one.

Accepts as argument a single number or string.

For example, retrieve ski slope resources that have their length lower than or equal to a certain

value:

GET /2022-04/skiSlopes?filter[length][lte]=5000 HTTP/1.1
Accept: application/vnd.api+json

• near: filters resources located within a certain distance to a pair of coordinates. Accepts a triple of

number arguments representing a coordinate’s longitude and latitude, and a distance in meters (i.e.,

LONGITUDE,LATITUDE,DISTANCE).

For example, retrieve lift resources whose geometries are within 10000 meters geo-located pair of

longitude and latitude (11.891472,46.92275):

AlpineBits® DestinationData 2022-04 page 30 of 130

GET /2022-04/lifts?filter[geometries][near]=11.891472,46.92275,10000 HTTP/1.1
Accept: application/vnd.api+json

• intersects: filters resources whose geo-location data intersects a desired area. Accepts as

argument a single string representing a GeoJSON object of type "Polygon" (see geometry).

For example, filter mountain areas whose geometry intersects a specific area (e.g., the area

surrounding a mountain).

GET /2022-
04/mountainAreas?filter[geometries][intersects]={"type":"Polygon","coordinates":
[[11.3490,46.4976],[11.3508,46.4975],[11.3510,46.4989],[11.3492,46.4990]]]} HTTP/1.1
Accept: application/vnd.api+json

• within: filters resources whose geo-location data is within a desired area. Accepts as argument a

single string representing a GeoJSON object of type "Polygon" (see geometry).

For example, filter venues whose geometry is within a specific area.

GET /2022-04/venues?filter[geometries][within]={"type":"Polygon","coordinates":
[[11.3490,46.4976],[11.3508,46.4975],[11.3510,46.4989],[11.3492,46.4990]]]} HTTP/1.1
Accept: application/vnd.api+json

• starts: filters resources whose text field starts with a desired substring. Accepts as argument a

single string.

For example, filter media object resources whose content type string start with a certain substring:

GET /2022-04/mediaObjects?filter[contentType][starts]=video HTTP/1.1
Accept: application/vnd.api+json

• ends: filters resources whose text field ends with a desired substring. Accepts as argument a single

string.

For example, filter media object resources whose content type string ends with a certain substring:

GET /2022-04/mediaObjects?filter[contentType][end]=png HTTP/1.1
Accept: application/vnd.api+json

• regex: filters resources whose text field passes a desired regular expression. Accepts as argument

a single string representing a regular expression.

For example, filter media object resources whose content type passes a certain regular expression:

GET /2022-04/mediaObjects?filter[contentType][regex]=^(audio|image|video) HTTP/1.1
Accept: application/vnd.api+json

4.1.5. Searching

A SERVER SHOULD support text search over its resources.

A SERVER that implements this feature MUST:

• Interpret the value of a search[FIELD] query parameter as the string to be used to search for

resources, while the value between square brackets refers to the resources' field that should be

considered in the search:

GET /2022-04/events?search[name]=bolzano HTTP/1.1
Accept: application/vnd.api+json

AlpineBits® DestinationData 2022-04 page 31 of 130

• Respond with a 400 Bad Request if a request searches for a query string on a field that does not

exist on the resource types returned by the queried endpoint.

GET /2022-04/events?search[license]=bolzano HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/events?search[license]=bolzano",
 },
 "errors": [{
 "title": "Invalid query parameter value.",
 "status": 400
 }]
}

A SERVER that implements searching SHOULD:

• Support searching at least over the name and description attributes, which are defined for all

resource types:

GET /2022-04/events?search[name]=bolzano HTTP/1.1
Accept: application/vnd.api+json

• Allow CLIENTS to combine a search query parameter with any other query parameter defined in

this standard:

GET /2022-
04/events?search[name]=bolzano&page[size]=20&fields[events]=name,startDate&sort=-
startDate HTTP/1.1
Accept: application/vnd.api+json

A SERVER that implements searching MAY:

• Support searching over all fields of a resource type by accepting a search query parameter that is

not followed by square brackets:

GET /2022-04/events?search=bolzano HTTP/1.1
Accept: application/vnd.api+json

• Choose how its search feature behaves. For instance, a SERVER MAY return resources whose

fields match or contain the search string, or whose fields contain a substring that is similar to the

search string.

4.1.6. Sparse Fieldsets

A SERVER MAY support requests to return only specific fields that characterize a resource on a per-type

basis, as defined in the JSON:API v1.0 specification

This feature applies both to endpoints that return collections of resources, e.g. /2022-04/events, and

those that return individual resources, e.g. /2022-04/events/123.

A SERVER that implements this feature MUST:

• Interpret the comma-separated (U+002C COMMA, ",") values of field[TYPE] query parameters as

the selected fields (attributes or relationships) to be returned for a given resource type, which in turn

AlpineBits® DestinationData 2022-04 page 32 of 130

https://jsonapi.org/format/1.0/#fetching-sparse-fieldsets

is identified by the value between square brackets:

GET /2022-04/agents?fields[agents]=name,contactPoints HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/agents?fields[agents]=name,contactPoints",
 },
 "data": [{
 "type": "agents",
 "id": "1",
 "meta": { ... },
 "attributes": {
 "name": {
 "eng": "Free University of Bozen-Bolzano"
 },
 "contactPoints": { ... },
 },
 "relationships": null,
 "links": { ... }
 }]
}

• Be able to process one field[TYPE] query parameter per resource type:

GET /2022-
04/events?fields[events]=name,startDate&fields[agents]=name,contactPoints&include=organ
izers HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

• NOT include additional fields in resource objects if a CLIENT requests a restricted field set (using

fields[]) for the respective resource types.

• Send all fields for resource objects if a CLIENT does not select a restricted field set (using

fields[]) for the respective resource types.

• Respond with a 400 Bad Request status code a request that selects fields that do not exist for a

resource type.

GET /2022-04/events?fields[events]=price HTTP/1.1
Accept: application/vnd.api+json

• Respond with a 400 Bad Request status code a request that submits multiple field[]
parameters for one resource type.

GET /2022-04/events?fields[events]=name&fields[events]=name,startDate HTTP/1.1
Accept: application/vnd.api+json

• Respond with a 400 Bad Request status code a request that selects fields on resource types that

are not returned in the queried endpoint.

AlpineBits® DestinationData 2022-04 page 33 of 130

GET /2022-04/events?fields[lifts]=name HTTP/1.1
Accept: application/vnd.api+json

HTTP/1.1 400 Bad Request
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04/events?fields[lifts]=name",
 },
 "errors": [{
 "title": "Query parameter does not have valid values.",
 "status": 400
 }]
}

4.1.7. Inclusion of Related Resources

The inclusion of related resources feature allows a CLIENT to request a SERVER to add, in a response

message, the resources related to the base resource.

For example, a CLIENT MAY request a SERVER for event resources and to include agent resources

that appear in the organizers field of the events returned in the response.

An example of a request asking for related resources is shown below:

GET /2022-04/events?include=organizers HTTP/1.1
Accept: application/vnd.api+json

It is RECOMMENDED that SERVERS support the inclusion of related resources.

In successful messages, a SERVER MUST add the related resources of requested relationships to the

included array.

To ask for the inclusion of related resources, a CLIENT MUST append includes as a URL parameter

of the request message.

The resources to be included are listed and separated by commas, as in /2022-
04/events?include=organizers,sponsors and /2022-
04/mountainAreas?include=skiSlopes,lifts,snowparks.

To request resources related to other resources, a dot-separated path for each relationship name can be

specified, as in /2022-04/events?include=organizers.multimediaDescriptions and

/2022-04/mountainAreas?include=multimediaDescriptions.licenseHolder.

If a SERVER is unable to identify a relationship or does not support the inclusion of resources from a

relationship, it MUST respond with 400 Bad Request.

The following example presents the response to a request for a collection of mediaObjects resources

with of resources present in the licenseHolder relationship.

GET /2022-04/mediaObjects?include=licenseHolder HTTP/1.1
Host: https://example.com
Accept: application/vnd.api+json

AlpineBits® DestinationData 2022-04 page 34 of 130

https://jsonapi.org/format/1.0/#fetching-includes

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "jsonapi": {
 "version": "1.0"
 },
 "meta": { ... },
 "links": { ... },
 "data": [
 {
 "type": "mediaObjects",
 "id": "1",
 "meta": { ... },
 "links": { ... },
 "attributes": { ... },
 "relationships": {
 "categories": null,
 "licenseHolder": {
 "data": {
 "type": "agents",
 "id": "2"
 },
 "links": { ... }
 }
 }
 }
],
 "included": [
 {
 "type": "agents",
 "id": "2",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... }
 }
]
}

4.2. Resource Creation

A SERVER MAY support resource creation requests.

If implemented, a SERVER MUST treat resource creation requests as transactions, i.e., requests MUST

either fully succeed or fail entirely leaving no partial side-effects.

Resource creation requests MUST be performed through HTTP POST requests (see Messages).

Resource creation requests MUST be supported on resource collection routes (see Resource Routes) of

the intended resource type.

Resource creation requests MUST include Content-Type and Accept headers.

Resource creation requests MUST include a JSON body containing a data field, as described in

Request Messages.

Resource creation requests MUST include the resource to be created in the data field of the body’s

message.

A SERVER MUST reject resource creation requests that do not conform to the requirements defined

here.

The example below demonstrates a valid resource creation request to create an event resource.

AlpineBits® DestinationData 2022-04 page 35 of 130

POST /2022-04/events HTTP/1.1
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "events",
 "id": "123",
 "attributes": {
 "name": {
 "eng": "Südtirol Jazz Festival 2022"
 },
 "startDate": "2022-06-29T00:00:00+00:00",
 "status": "published"
 },
 "relationships": {
 "publisher": {
 "data": {
 "type": "agents",
 "id": "1"
 }
 }
 }
 }
}

A SERVER MUST respond to successful requests with a status code 201 CREATED.

A SERVER MUST add the Content-Type header on successful responses (see Messages).

A SERVER SHOULD add the Location header with the individual resource route of the created

resource.

In the success response the SERVER MUST send the created resource, including all fields of the

attributes, relationships, meta, and links (see Hypermedia Controls) objects, equal to a

retrieval request on the created resource’s individual route.

A SERVER MUST set the value of lastUpdate in the meta object of the resource to the moment when

the resource was created.

A SERVER MUST assign a value to the dataProvider field of the meta object of the resource using

one of the following options:

• A SERVER MAY require CLIENTS to send the dataProvider value in the meta object of the

resource being created

• A SERVER MAY assign the dataProvider value in the meta object of the resource using

information from outside the message’s body (e.g., using the authentication of the request to identify

the data provider)

If a SERVER does not use CLIENT-generated values for dataProvider, it MUST reject creation

requests that include a value for dataProvider.

A SERVER SHOULD ignore any additional fields included in the request (see Request Messages).

A SERVER SHOULD ignore any links objects present in the request (see Hypermedia Controls).

A SERVER MUST reject creation requests whose resource does not include a valid resource type,

type, or whose resource lacks any non-nullable fields (see Resources).

A SERVER MUST set to null any nullable attribute or relationship that is not present in the creation

request’s resource (see Resources).

A SERVER MUST reject creation requests whose resource contains relationships to resources that do

not exist in the SERVER.

AlpineBits® DestinationData 2022-04 page 36 of 130

A SERVER MUST accept CLIENT-generated values of id as long as the conditions below are meet.

Otherwise, the SERVER MUST reject the request.

• the id is available in the SERVER

• the id conforms to the syntax used by the SERVER

The following example demonstrates the response to a successful resource creation request.

HTTP/1.1 201 CREATED
Content-Type: application/vnd.api+json
Location: https://example.com/2022-04/events/123

{
 "jsonapi": { ... },
 "links": { ... },
 "meta": { ... },
 "data": {
 "type": "events",
 "id": "123",
 "links": {
 "self": ...
 },
 "meta": {
 "lastUpdate": ...,
 "dataProvider": ...,
 },
 "attributes": {
 "name": {
 "eng": "Südtirol Jazz Festival 2022"
 },
 "startDate": "2022-06-29T00:00:00+00:00",
 "status": "published",
 "description": null,
 ...
 },
 "relationships": {
 "publisher": {
 "data": {
 "type": "agents",
 "id": "1"
 },
 "links": {
 "related": ...
 }
 },
 "venues": null,
 ...
 }
 }
}

A SERVER MUST reply to resource creation requests with an error response in the following cases,

using the adequate error codes (see Error Messages).

• the CLIENT does not have authorization to create a resource

• the POST HTTP method is not implemented in the requested route

• the request does not include a well-formed resource in the message’s body

• the request lacks non-nullable fields

• the request includes an invalid CLIENT-generated id

4.3. Resource Update

A SERVER MAY support resource update requests.

AlpineBits® DestinationData 2022-04 page 37 of 130

If implemented, a SERVER MUST treat resource update requests as transactions, i.e., requests MUST

either fully succeed or fail entirely leaving no partial side-effects.

Resource update requests MUST be performed through HTTP PATCH requests (see Messages).

Resource update requests MUST be supported on individual resource routes (see Resource Routes) of

the identified resource.

Resource update requests MUST include Content-Type and Accept headers.

Resource update requests MUST include a JSON body containing a data field, as described in Request

Messages.

Resource update requests MUST include the resource to be update in the data field of the body’s

message.

Resource update requests MUST include the id and the type of the resource to be update and these

values MUST conform to the individual resource route the request was sent to.

Resource update requests MUST include all attributes and relationships to be replaced. Attributes and

relationships that are to be removed MUST be set to null. Non-nullable attributes and relationships

MUST NOT be set to null.

A SERVER MUST reject resource update requests that do not conform to the requirements defined here.

The example below demonstrates a valid resource update request to update an event resource.

PATCH /2020-04/events/123 HTTP/1.1
Content-Type: application/vnd.api+json
Accept: application/vnd.api+json

{
 "data": {
 "type": "events",
 "id": "123",
 "attributes": {
 "status": "canceled"
 },
 "relationships": {
 "publisher": {
 "data": {
 "type": "agents",
 "id": "2"
 }
 },
 "sponsors": null
 }
 }
}

A SERVER MUST respond to successful requests with a status code 200 OK.

A SERVER MUST add the Content-Type header on successful responses (see Messages).

In the success response the SERVER MUST send the created resource, including all fields of the

attributes, relationships, meta, and links (see Hypermedia Controls) objects, equal to a

retrieval request on the created resource’s individual route.

A SERVER MUST set the value of lastUpdate in the meta object of the resource to the moment when

the resource was updated.

A SERVER SHOULD ignore any additional fields included in the request (see Request Messages).

A SERVER SHOULD ignore any links objects present in the request (see Hypermedia Controls).

AlpineBits® DestinationData 2022-04 page 38 of 130

A SERVER MUST reject creation requests whose resource contains relationships to resources that do

not exist in the SERVER.

A SERVER MAY update the value of the dataProvider field of the meta object of the resource using

one of the following options:

• A SERVER MAY keep the dataProvider value of the creation assigned during the creation of the

resource

• A SERVER MAY require CLIENTS to send the dataProvider value in the meta object of the

resource being update

• A SERVER MAY assign the dataProvider value in the meta object of the resource using

information from outside the message’s body (e.g., using the authentication of the request to identify

the data provider)

If a SERVER does not use CLIENT-generated values for dataProvider, or does not update the value

of dataProvider after the resource’s creation, it MUST reject update requests that include a value for

dataProvider.

The following example demonstrates the response to a successful resource update request.

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "jsonapi": { ... },
 "links": { ... },
 "meta": { ... },
 "data": {
 "type": "events",
 "id": "123",
 "meta": { ... },
 "attributes": {
 "status": "canceled",
 ...
 },
 "relationships": {
 "publisher": {
 "data": {
 "type": "agents",
 "id": "2"
 },
 "links": {
 "related": ...
 }
 },
 "sponsors": null
 ...
 }
 }
}

A SERVER MUST reply to resource update requests with an error response in the following cases, using

the adequate error codes (see Error Messages).

• the CLIENT does not have authorization to update the resource

• the PATCH HTTP method is not implemented in the requested route

• the request does not include a well-formed resource in the message’s body

• the request updates non-nullable fields to null

4.4. Resource Deletion

A SERVER MAY support resource deletion requests.

AlpineBits® DestinationData 2022-04 page 39 of 130

If implemented, a SERVER MUST treat resource deletion requests as transactions, i.e., requests MUST

either fully succeed or fail entirely leaving no partial side-effects.

Resource deletion requests MUST be performed through HTTP DELETE requests (see Messages).

Resource deletion requests MUST be supported on individual resource routes (see Resource Routes) of

the identified resource.

Resource deletion requests MUST NOT include a body, as described in Request Messages.

The example below demonstrates a valid resource deletion request to delete an event resource.

DELETE /2022-04/events/123 HTTP/1.1

A SERVER MUST respond to successful requests with a status code 204 No Content.

A SERVER MUST NOT include a body message in responses to successful deletion requests.

The following example demonstrates the response to a successful resource deletion request.

HTTP/1.1 204 No Content

A SERVER MUST reply to resource deletion requests with an error response in the following cases,

using the adequate error codes (see Error Messages).

• the resource identified by the route’s id does not exist

• the CLIENT does not have authorization to delete the resource

AlpineBits® DestinationData 2022-04 page 40 of 130

5. Routes

The AlpineBits® DestinationData standard defines a set of routes to be implemented by SERVERS

following the REST architectural style for APIs. These routes commit to a well-defined pattern which is

structured as follows:

• Base route: /

The base route provides links to all versions of the AlpineBits® DestinationData standard supported

by the SERVER. For details, refer to Base Route.

• Version routes: /<version>

The version route provides links to the the collections of all resource types available in the SERVER.

For details, refer to Version Routes.

• Resource collection routes: /<version>/<resourceType>

The resource collection route provides the collection of all available resources of the related type.

The details for each resource collection route can be found in this chapter its related subsection (see

Resource Routes).

• Individual resource routes: /<version>/<resourceType>/<resourceId>

The individual resource route provides the resource that is uniquely identified by that route. The

details for each individual resource route can be found in this chapter its related subsection (see

Resource Routes).

• Resources' relationships routes:

/<version>/<resourceType>/<resourceId>/<relationship>

The resources' relationship route provides all resources related to the one identified in the route

through the related relationship. These can be either single resources or collections of resources,

depending on the definition of the relationship. The details for each resources' relationship route can

be found in this chapter its related subsection (see Resource Routes).

The definition for the fragments in the pattern above have the following interpretation:

• <version> is a code representing the version of the AlpineBits® DestinationData standard

implemented in that route. This allows simultaneous support to multiple standard versions, typically

necessary during migration periods. Currently, the following versions can be found:

◦ 2020-04: first release;

◦ 2021-04: second release;

◦ 2022-04: third and current release

• <resourceType> is a standard-defined resource type (e.g., events, mountainAreas, and

venues). See Resources.

• <resourceId>: an ID that uniquely identifies a resource that is an instance of the

<resourceType>.

• <relationship>: field name of a resource’s relationship. Allows access to a resource’s related

resources, such as an event’s organizer.

This chapter details all routes that are part of the AlpineBits® DestinationData standard version 2022-

04, listing the methods and and features that SERVERS MAY be supported by SERVERS on each of

them.

5.1. Base Route

To retrieve the versions of AlpineBits® DestinationData implemented by a SERVER, a CLIENT MAY

send a GET request to that SERVER’s base endpoint /, as in the example below.

AlpineBits® DestinationData 2022-04 page 41 of 130

GET https://example.com/ HTTP/1.1
Accept: application/vnd.api+json

A SERVER MUST respond to requests to the base endpoint / with links to each implemented versions.

The data field in the response body MUST be set to null.

The following example demonstrates the response from a SERVER that has available implementations

of the versions 2021-04 and 2022-04 of the AlpineBits® DestinationData standard.

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com",
 "2021-04": "https://example.com/2021-04",
 "2022-04": "https://example.com/2022-04"
 },
 "data": null
}

SERVERS MUST support the version standard they implement on the version route dedicated to it. For

example, the implementation of the AlpineBits® DestinationData standard version 2022-04 MUST use

the version route /2022-04 and its sub-routes.

5.2. Version Routes

To retrieve the routes implemented by a SERVER, a CLIENT MAY perform a GET request on the desired

version’s endpoint (e.g., /2022-04), as in the example below.

GET https://example.com/2022-04 HTTP/1.1
Accept: application/vnd.api+json

A SERVER MUST respond to requests to implemented version routes with links to each implemented

resource collection route. The data field in the response body MUST be set to null.

The following example demonstrates the response from a SERVER that has available implementations

of resource collection routes of all resource types except categories and features.

HTTP/1.1 200 OK
Content-Type: application/vnd.api+json

{
 "links": {
 "self": "https://example.com/2022-04",
 "agents": "https://example.com/2022-04/agents",
 "events": "https://example.com/2022-04/events",
 "eventSeries": "https://example.com/2022-04/eventSeries",
 "lifts": "https://example.com/2022-04/lifts",
 "mediaObjects": "https://example.com/2022-04/mediaObjects",
 "mountainAreas": "https://example.com/2022-04/mountainAreas",
 "skiSlopes": "https://example.com/2022-04/skiSlopes",
 "snowparks": "https://example.com/2022-04/snowparks",
 "venues": "https://example.com/2022-04/venues"
 },
 "data": null
}

AlpineBits® DestinationData 2022-04 page 42 of 130

5.3. Resource Routes

Resource routes are those routes that expose the resources defined in the AlpineBits®

DestinationData standard. This section lists all routes defined in this standard, describing what the

return as response to a GET request, what HTTP methods the MAY respond to (see Requests and

Responses), and what additional features a SERVER MAY support on GET requests (see resource

retrieval features).

A SERVER MUST listen to HTTP requests on all routes listed in this section. A SERVER MUST respond

with a 404 Not Found status code all requests on resource routes it does not implement.

A SERVER MUST be able to provide data for at least one of the following resources routes:

• /2022-04/events

• /2022-04/mountainAreas

• /2022-04/lifts

• /2022-04/skiSlopes

• /2022-04/snowparks

Throughout the next sections' routes tables, the M identifies mandatory features on GET requests on

related route. Other listed features that have no appended symbols are either recommended or optional

for SERVERS to implement.

5.3.1. Agent Routes

Agent routes are those used to create, retrieve, update, and delete Agent resources, as well as to

retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/agents GET,
POST

Returns a collection of all Agent
resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/agents/:id GET,
PATCH,
DELETE

Returns the Agent resource

identified by the :id parameter

Sparse Fieldsets,
Inclusion

/2022-04/agents/:id /categories GET Returns the collection of
Category resources that classify
the agent

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/agents/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the agent

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.2. Category Routes

Category routes are those used to create, retrieve, update, and delete Category resources, as well as to

retrieve resources they are related to.

AlpineBits® DestinationData 2022-04 page 43 of 130

Route Methods Description Additional GET
features

/2022-04/categories GET,
POST

Returns the collection of all
Category resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/categories/:id GET,
PATCH,
DELETE

Returns the Category resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/categories/:id /children GET Returns the collection of
Category resources that are
children of the category

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/categories/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the category

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/categories/:id /parents GET Returns the collection of
Category resources that are
parents of the category

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.3. Event Routes

Event routes are those used to create, retrieve, update, and delete Event resource, as well as to retrieve

resources they are related to. \

Route Methods Description Additional GET
features

/2022-04/events GET,
POST

Returns the collection of all Event
resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id GET,
PATCH,
DELETE

Returns the Event resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/events/:id /categories GET Returns the collection of
Category resources that classify
the event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 44 of 130

Route Methods Description Additional GET
features

/2022-04/events/:id /contributors GET Returns the collection of Agent
resources that are contributors on
the event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id /organizers GET Returns the collection of Agent
resources that are organizers of
the event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id /publisher GET Return the Agent resource that is
the publisher of the event

Sparse Fieldsets,
Inclusion

/2022-04/events/:id /series GET Return the Event Series resource
that the event is an edition of

Sparse Fieldsets,
Inclusion

/2022-04/events/:id /sponsors GET Returns the collection of Agent
resources that are sponsors of
the event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id /subEvents GET Returns the collection of Event
resources that are part of the
event

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/events/:id /venues GET Returns the collection of Venue
resources where the event will
happen

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.4. Event Series Routes

Event Series routes are those used to create, retrieve, update, and delete Event Series resources, as

well as to retrieve resources they are related to.

AlpineBits® DestinationData 2022-04 page 45 of 130

Route Methods Description Additional GET
features

/2022-04/eventSeries GET,
POST

Returns the collection of all Event
Series resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/eventSeries/:id GET,
PATCH,
DELETE

Returns the Event Series

resource identified by the id
parameter

Sparse Fieldsets,
Inclusion

/2022-04/eventSeries/:id
/categories

GET Returns the collection of
Category resources that classify
the event series

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/eventSeries/:id /editions GET Returns the collection of Event
resources that are editions of the
event series

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/eventSeries/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the event
series

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.5. Feature Routes

Feature routes are those used to create, retrieve, update, and delete Feature resources, as well as to

retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/features GET,
POST

Returns the collection of all
Feature resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/features/:id GET,
PATCH,
DELETE

Returns the Feature resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/features/:id /children GET Returns the collection of Feature
resources that are children of the
feature

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 46 of 130

Route Methods Description Additional GET
features

/2022-04/features/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the feature

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/features/:id /parents GET Returns the collection of Feature
resources that are parents of the
feature

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.6. Lift Routes

Lift routes are those used to create, retrieve, update, and delete Lift resources, as well as to retrieve

resources they are related to.

Route Methods Description Additional GET
features

/2022-04/lifts GET,
POST

Returns the collection of all Lift
resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/lifts/:id GET,
PATCH,
DELETE

Returns the Lift resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/lifts/:id /categories GET Returns the collection of
Category resources that classify
the lift

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/lifts/:id /connections GET Returns the collection of Lift,
Mountain Area, Ski Slope, and
Snowpark resources that are
physically accessible from the lift

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/lifts/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the lift

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 47 of 130

5.3.7. Media Object Routes

Media Object routes are those used to create, retrieve, update, and delete Media Object resources, as

well as to retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/mediaObjects GET,
POST

Returns the collection of all Media
Object resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mediaObjects/:id GET,
PATCH,
DELETE

Returns the Media Object

resource identified by the id
parameter

Sparse Fieldsets,
Inclusion

/2022-04/mediaObjects/:id
/categories

GET Returns the collection of
Category resources that classify
the media object

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mediaObjects/:id
/licenseHolder

GET Return the Agent resource that is
the license holder of the media
object

Sparse Fieldsets,
Inclusion

5.3.8. Mountain Area Routes

Mountain Area routes are those used to create, retrieve, update, and delete Mountain Area resources, as

well as to retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/mountainAreas GET,
POST

Returns the collection of all
Mountain Area resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id GET,
PATCH,
DELETE

Returns the Mountain Area

resource identified by the id
parameter

Sparse Fieldsets,
Inclusion

/2022-04/mountainAreas/:id
/areaOwner

GET Return the Agent resource that is
the owner of the mountain area

Sparse Fieldsets,
Inclusion

/2022-04/mountainAreas/:id
/categories

GET Returns the collection of
Category resources that classify
the mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 48 of 130

Route Methods Description Additional GET
features

/2022-04/mountainAreas/:id
/connections

GET Returns the collection of Lift,
Mountain Area, Ski Slope, and
Snowpark resources that are
physically accessible from the
mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id /lifts GET Returns the collection of Lift
resources that are located within
the mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the
mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id
/skiSlopes

GET Returns the collection of Ski
Slope resources that are located
within the mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id
/snowparks

GET Returns the collection of
Snowpark resources that are
located within the mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/mountainAreas/:id
/subAreas

GET Returns the collection of
Mountain Area resources that are
located within the mountain area

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.9. Ski Slope Routes

Ski Slope routes are those used to create, retrieve, update, and delete Ski Slope resources, as well as to

retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/skiSlopes GET,
POST

Returns the collection of all Ski
Slope resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 49 of 130

Route Methods Description Additional GET
features

/2022-04/skiSlopes/:id GET,
PATCH,
DELETE

Returns the Ski Slope resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/skiSlopes/:id /categories GET Returns the collection of
Category resources that classify
the ski slope

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/skiSlopes/:id
/connections

GET Returns the collection of Lift,
Mountain Area, Ski Slope, and
Snowpark resources that are
physically accessible from the ski
slope

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/skiSlopes/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the ski slope

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.10. Snowpark Routes

Snowpark routes are those used to create, retrieve, update, and delete Snowpark resources, as well as

to retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/snowparks GET,
POST

Returns the collection of all
Snowpark resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/snowparks/:id GET,
PATCH,
DELETE

Returns the Snowpark resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/snowparks/:id
/categories

GET Returns the collection of
Category resources that classify
the snowpark

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/snowparks/:id
/connections

GET Returns the collection of Lift,
Mountain Area, Ski Slope, and
Snowpark resources that are
physically accessible from the
snowpark

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 50 of 130

Route Methods Description Additional GET
features

/2022-04/snowparks/:id /features GET Returns the collection of Feature
resources that are present in the
snowpark

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/snowparks/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the
snowpark

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

5.3.11. Venue Routes

Venue routes are those used to create, retrieve, update, and delete Venue resources, as well as to

retrieve resources they are related to.

Route Methods Description Additional GET
features

/2022-04/venues GET,
POST

Returns the collection of all
Venue resources

PaginationM,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/venues/:id GET,
PATCH,
DELETE

Returns the Venue resource

identified by the id parameter

Sparse Fieldsets,
Inclusion

/2022-04/venues/:id /categories GET Returns the collection of
Category resources that classify
the venue

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

/2022-04/venues/:id
/multimediaDescriptions

GET Returns the collection of Media
Object resources that are
multimedia descriptions (e.g.,
images or videos) of the venue

Pagination,
Sparse Fieldsets,
Inclusion,
Sorting,
Random Sorting,
Filtering,
Searching

AlpineBits® DestinationData 2022-04 page 51 of 130

6. Datatypes

6.1. address

An address is represented as an object containing the following fields:

• street: a text object containing the street name and number.

For example: { "ita": "Via Bolzano 63/A", "deu": "Bozner Straße 63/A" }

• city: a text object containing the city name.

For example: { "ita": "Appiano sulla Strada del Vino", "deu": "Eppan an der
Weinstraße" }

• region: a text object containing the administrative unit in which the city is located (e.g. province,

region, state). For example: { "ita": "Bolzano", "deu": "Bozen" }

• country: a string containing a 2-letter code that identifies the country as defined in the ISO 3166-1.

For example: "IT" identifies Italy.

• zipcode: a string containing the zip code. For example: "39057"

• complement: a text object containing additional information about the address, such as the building

name, the floor, and/or the room number. For example: { "ita": "2 piano, sala 1.10",
"deu": "2 etage, raum 1.10" }

• type: a string containing the type of the address. For example, "billing". The standard does not

standardize types of addresses.

Every address object MUST have defined values for at least the city and country fields.

Here is an example of a minimum address object:

{
 "street": null,
 "city": {
 "ita": "Appiano sulla Strada del Vino",
 "deu": "Eppan an der Weinstraße"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "complement": null,
 "type": null
}

And here is an example of a complete address object:

AlpineBits® DestinationData 2022-04 page 52 of 130

https://www.iso.org/obp/ui/#search/code/

{
 "street": {
 "ita": "Via Bolzano 63/A",
 "deu": "Bozner Straße 63/A"
 },
 "city": {
 "ita": "Appiano sulla Strada del Vino",
 "deu": "Eppan an der Weinstraße"
 },
 "region": {
 "ita": "Bolzano",
 "deu": "Bozen"
 },
 "country": "IT",
 "zipcode": "39057",
 "complement": {
 "ita": "2 piano, sala 1.10",
 "deu": "2 etage, raum 1.10"
 },
 "type": "billing"
}

6.2. contact point

A contact point contains data that one can use to contact an Agent. It is described by an object

containing the following fields:

• email: an email defined for the contact point. Nullable.

For example, "info@alpinebits.org".

• telephone: a string containing a telephone, including the country code and without spaces, defined

for the contact point. Nullable.

For example: "+39000000000000".

• address: an address defined for the contact point. Nullable.

• availableHours: an array of hours specification objects identifying the hours in which the Agent

can be contacted through the means defined in the contact point. Nullable.

Every contact point object MUST define at least one of the following fields: email, telephone,

address.

The three objects below illustrate the minimum information that may be defined within a contact point:

Contact point containing only an email address:

{
 "email": "info@alpinebits.org",
 "telephone": null,
 "address": null,
 "availableHours": null
}

Contact point containing only a telephone:

{
 "email": null,
 "telephone": "+39000000000000",
 "address": null,
 "availableHours": null
}

AlpineBits® DestinationData 2022-04 page 53 of 130

mailto:info@alpinebits.org

Contact point containing only an address:

{
 "email": null,
 "telephone": null,
 "address": {
 "street": null,
 "city": {
 "ita": "Appiano sulla Strada del Vino",
 "deu": "Eppan an der Weinstraße"
 },
 "region": null,
 "country": "IT",
 "zipcode": null
 },
 "availableHours": null
}

The object below illustrates the usage of all fields of a contact point object:

AlpineBits® DestinationData 2022-04 page 54 of 130

{
 "email": "info@alpinebits.org",
 "telephone": "+39 0471 066 600",
 "address": {
 "street": {
 "ita": "Via Bolzano 63/A",
 "deu": "Bozner Straße 63/A"
 },
 "city": {
 "ita": "Appiano sulla Strada del Vino",
 "deu": "Eppan an der Weinstraße"
 },
 "region": {
 "ita": "Bolzano",
 "deu": "Bozen"
 },
 "country": "IT",
 "zipcode": "39057"
 },
 "availableHours": {
 "dailySchedules": null,
 "weeklyScheules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 { "opens": "08:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "18:00:00" }
],
 "tuesday": [
 { "opens": "08:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "18:00:00" }
],
 "wednesday": [
 { "opens": "08:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "18:00:00" }
],
 "thursday": [
 { "opens": "08:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "18:00:00" }
],
 "friday": [
 { "opens": "08:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "18:00:00" }
],
 "saturday": null,
 "sunday": null
 }
]
 }
}

Note that the standard does not allow multiple emails, telephones, and addresses to be defined in a

single contact point object. To exchange such data, multiple contact objects should be used.

6.3. date

A string that contains a year, a month, and a day, formatted as YYYY-MM-DD. Corresponds to full-date in

RFC 3339.

Here is an example:

"2020-04-01"

AlpineBits® DestinationData 2022-04 page 55 of 130

https://tools.ietf.org/html/rfc3339

6.4. date-time

A string that contains a date, a time, and a time offset (to account for time zones) and formatted as

YYYY-MM-DDThh:mm:ss+hh:mm (or YYYY-MM-DDThh:mm:ss-hh:mm). Corresponds to date-time in

RFC 3339.

The date-time that refers to April 1st, 2020 at 23 hours, 59 minutes, and 59 seconds according to the

Central European Time is:

"2020-04-01T23:59:59+04:00"

6.5. email

A string containing a valid internet email address, as defined in RFC 5322, section 3.4.1.

Here is an example of a valid email:

info@alpinebits.org

6.6. geometry

The representation of geographic data structures in this standard is borrowed from the GeoJSON

standard specification.

In particular, this standard adopts GeoJSON’s definition of Geometry Object, which represents points,

curves, and surfaces in coordinate space.

A generic geometry object contains the following fields:

• type: a string identifying the geometry type, whose possible values are "Point", "MultiPoint",

"LineString", "MultiLineString", "Polygon", and "MultiPolygon". Non-nullable.

• coordinates: an array containing the coordinates of the geometry. The structure of the members of

this array is determined by the type of geometry. Non-nullable.

Definitions for each geometry type are given in the subsequent sections, being directly extracted from

the GeoJSON standard specification.

6.6.1. point

For type Point, the coordinates member is a single position.

An example of a geometry object of type Point is provided below:

{
 "type": "Point",
 "coordinates": [
 11.358447074890137,
 46.49667880447103
]
}

6.6.2. multi-point

For type MultiPoint, the coordinates member is an array of positions.

An example of a geometry object of type MultiPoint is provided below:

AlpineBits® DestinationData 2022-04 page 56 of 130

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc5322#section-3.4.1
https://tools.ietf.org/html/rfc7946
https://tools.ietf.org/html/rfc7946#section-3.1
https://tools.ietf.org/html/rfc7946

{
 "type": "MultiPoint",
 "coordinates": [
 [
 11.358447074890137,
 46.49667880447103
],
 [
 11.119945049285889,
 46.07315619530213
]
]
}

6.6.3. line-string

For type LineString, the coordinates member is an array of two or more positions.

An example of a geometry object of type LineString is provided below:

{
 "type": "LineString",
 "coordinates": [
 [
 11.358447074890137,
 46.49667880447103
],
 [
 11.119945049285889,
 46.07315619530213
]
]
}

6.6.4. multi-line-string

For type MultiLineString, the coordinates member is an array of LineString coordinate arrays.

An example of a geometry object of type MultiLineString is provided below:

AlpineBits® DestinationData 2022-04 page 57 of 130

{
 "type": "MultiLineString",
 "coordinates": [
 [
 [
 11.358447074890137,
 46.49667880447103
],
 [
 11.119945049285889,
 46.07315619530213
]
],
 [
 [
 11.149181127548218,
 46.673201221323815
],
 [
 11.40104055404663,
 47.263329885918694
]
]
]
}

6.6.5. polygon

To specify a constraint specific to the Polygon type, it is useful to introduce the concept of a linear ring:

• A linear ring is a closed LineString with four or more positions.

• The first and last positions are equivalent, and they MUST contain identical values; their

representation SHOULD also be identical.

• A linear ring is the boundary of a surface or the boundary of a hole in a surface.

• A linear ring MUST follow the right-hand rule with respect to the area it bounds, i.e., exterior rings are

counterclockwise, and holes are clockwise.

Though a linear ring is not explicitly represented as a GeoJSON geometry type, it leads to a canonical

formulation of the Polygon geometry type definition as follows:

• For type Polygon, the coordinates member MUST be an array of linear ring coordinate arrays.

• For Polygons with more than one of these rings, the first MUST be the exterior ring, and any others

MUST be interior rings. The exterior ring bounds the surface, and the interior rings (if present) bound

holes within the surface.

An example of a geometry object of type Polygon is provided below:

AlpineBits® DestinationData 2022-04 page 58 of 130

{
 "type": "Polygon",
 "coordinates": [
 [
 [
 11.349220275878906,
 46.49902740460012
],
 [
 11.349080801010132,
 46.497631550714374
],
 [
 11.350893974304197,
 46.49759462287638
],
 [
 11.351033449172974,
 46.49890185307167
],
 [
 11.349220275878906,
 46.49902740460012
]
]
]
}

6.6.6. multi-polygon

For type MultiPolygon, the coordinates member is an array of Polygon coordinate arrays.

An example of a geometry object of type MultiPolygon is provided below:

AlpineBits® DestinationData 2022-04 page 59 of 130

{
 "type": "MultiPolygon",
 "coordinates": [
 [
 [
 [
 11.349220275878906,
 46.49902740460012
],
 [
 11.349080801010132,
 46.497631550714374
],
 [
 11.350893974304197,
 46.49759462287638
],
 [
 11.351033449172974,
 46.49890185307167
],
 [
 11.349220275878906,
 46.49902740460012
]
]
],
 [
 [
 [
 11.352425515651703,
 46.49758354452009
],
 [
 11.352377235889433,
 46.49728812085311
],
 [
 11.352744698524473,
 46.49723642154639
],
 [
 11.352425515651703,
 46.49758354452009
]
]
]
]
}

6.7. hours specification

An hours specification object allows the representations of schedules over periods of time. They can be

used to specify when a person or organization can be contacted, when a place is open, or when a

recurrent event will occur. Hours specification objects may contain daily and weekly schedules, which in

turn contain arrays of opening and closing hours for a given day.

Each opening/closing interval is represented by an object containing an opens and a closes time

strings. For example, the interval from 9am to 5pm may be represented as { "opens": "09:00:00",
"closes": "17:00:00" }. For a single day, an array of these objects represents the daily opening

schedule. For example, the working hours of an office may be represented by an array with two object

spaced by a lunch break, as in the following case:

AlpineBits® DestinationData 2022-04 page 60 of 130

[
 { "opens": "09:00:00", "closes": "12:00:00" },
 { "opens": "14:00:00", "closes": "17:00:00" }
]

The hours specification object represents daily and weekly schedules by using the aforementioned

arrays to describe the schedules of each date. For that, the hours specification object MUST contain two

nullable fields, dailySchedules and weeklySchedules that respectively contain daily and weekly

schedules.

The dailySchedules field is a nullable non-empty object whose fields are date strings and represent

the schedule for the listed dates. Each date field is a nullable non-empty array of opening interval

objects. Each date set to null represents that no opening interval exists for the given date (i.e.,

represents a closed date). For example, a 5-days conference containing a skipped date between satellite

and main events maybe be represented as follows:

{
 "dailySchedules": {
 "2020-04-06": [{ "opens": "08:00:00", "closes": "18:00:00" }],
 "2020-04-07": [{ "opens": "08:00:00", "closes": "18:00:00" }],
 "2020-04-08": null,
 "2020-04-09": [{ "opens": "08:00:00", "closes": "18:00:00" }],
 "2020-04-10": [{ "opens": "08:00:00", "closes": "18:00:00" }],
 },
 "weeklySchedules": null
}

The weeklySchedules field is a nullable non-empty array of objects representing recurrent weekly

schedules over defined periods of time. Each object within the weeklySchedules array MUST contain

the following fields:

• validFrom: a non-nullable date string that represents the first valid day of the weekly schedule.

• validTo: a non-nullable date string that represents the last valid day of the weekly schedule.

• sunday: a nullable non-empty array of opening interval objects that represents the schedule for

every Sunday within the validity of the weekly schedule.

• monday: a nullable non-empty array of opening interval objects that represents the schedule for

every Monday within the validity of the weekly schedule.

• tuesday: a nullable non-empty array of opening interval objects that represents the schedule for

every Tuesday within the validity of the weekly schedule.

• wednesday: a nullable non-empty array of opening interval objects that represents the schedule for

every Wednesday within the validity of the weekly schedule.

• thursday: a nullable non-empty array of opening interval objects that represents the schedule for

every Thursday within the validity of the weekly schedule.

• friday: a nullable non-empty array of opening interval objects that represents the schedule for

every Friday within the validity of the weekly schedule.

• saturday: a nullable non-empty array of opening interval objects that represents the schedule for

every Saturday within the validity of the weekly schedule.

The weeklySchedules may represent, for example, a shopping mall that opens beyond regular hours

on Saturdays but closes on Sundays, as follows:

AlpineBits® DestinationData 2022-04 page 61 of 130

{
 "dailySchedules": null,
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "tuesday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "wednesday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "thursday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "friday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "saturday": [{ "opens": "08:00:00", "closes": "22:00:00" }],
 "sunday": null
 }
],
}

The following constraints apply to hours specification objects:

• within a single date, opening interval objects MUST NOT overlap

• within the weeklySchedules array, the validity window (between validFrom to validTo) of any

two objects MUST NOT overlap

• schedules within dailySchedules have precedence over schedules within weeklySchedules for

the same date

• the closing time of an opening interval object MAY go beyond midnight into the following day

To exemplify the combination daily and weekly schedules, we can exceptions to the shopping mall

example, adding that it could be closed in during the first week of the year and that it includes

exceptional schedules during the holidays.

{
 "dailySchedules": {
 "2020-12-24": [{ "opens": "08:00:00", "closes": "02:00:00" }],
 "2020-12-25": [{ "opens": "08:00:00", "closes": "16:00:00" }],
 "2020-12-26": null,
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-01-07",
 "monday": null,
 "tuesday": null,
 "wednesday": null,
 "thursday": null,
 "friday": null,
 "saturday": null,
 "sunday": null
 },
 {
 "validFrom": "2020-01-08",
 "validTo": "2020-12-31",
 "monday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "tuesday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "wednesday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "thursday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "friday": [{ "opens": "08:00:00", "closes": "20:00:00" }],
 "saturday": [{ "opens": "08:00:00", "closes": "22:00:00" }],
 "sunday": null
 }
],
}

AlpineBits® DestinationData 2022-04 page 62 of 130

6.8. snow condition

A snow condition object allows the representation of the conditions of a ski slope, a snowpark, or a

mountain area at a given point in time.

The object is described by the following fields:

• baseSnow: a number representing the depth of base snow in a location. Measured in centimeters.

Non-nullable.

• baseSnowRange: an object that identifies the variation in the depth of snow in a location. Nullable.

This object contains two fields:

◦ lower: a number that identifies the smallest depth of snow found in a location. Measured in

centimeters. Non-nullable.

◦ upper: a number that identifies the biggest depth of snow found in a location. Measured in

centimeters. Non-nullable.

• groomed: a boolean flag indicating whether or not the snow in a location has been groomed.

Nullable.

• latestStorm: a number representing the amount of snow from the latest storm cycle in a location.

Measured in centimeters. Nullable.

• obtainedIn: a date or date-time string that identifies when the data contained in the snow condition

objects was obtained. Nullable.

• primarySurface: a string that indicates the primary type of snow found in a location. Non-nullable.

It is RECOMMENDED the usage of snow types defined in MTN.XML: "packed-powder",

"powder", "hard-pack", "loose-granular", "frozen-granular"", "wet-packed",

"wet-granular", "wet-snow", "spring-conditions", "windblown", "corn-snow",

"icy", "variable"

• secondarySurface: a string that indicates the secondary type of snow found in a location.

Nullable. Its recommended values are those listed for primarySurface.

• snowMaking: a boolean flag indicating whether or not the snow in a location has been artificially

produced. Nullable.

• snowOverNight: a number representing the amount of snow accumulated in a location throughout

the night before the measurement. Measured in centimeters. Nullable.

The following example illustrates the minimal information required for a snow condition object:

{
 "obtainedIn": null,
 "primarySurface": "powder",
 "secondarySurface": null,
 "baseSnow": 50,
 "baseSnowRange": null,
 "latestStorm": null,
 "snowOverNight": null,
 "groomed": null,
 "snowMaking": null
}

The following example illustrates all fields of snow condition object:

AlpineBits® DestinationData 2022-04 page 63 of 130

http://www.mtnxml.org/documentation.html#Weather

{
 "obtainedIn": "2020-01-18T08:00:00+04:00",
 "primarySurface": "powder",
 "secondarySurface": "packed-powder",
 "baseSnow": 50,
 "baseSnowRange": {
 "lower": 40,
 "upper": 60
 },
 "latestStorm": 40,
 "snowOverNight": 5,
 "groomed": true,
 "snowMaking": false
}

6.9. text

Every field used to exchange textual data (e.g. name, description) supports the use of multiple

languages. Such fields have, like their values, objects containing language codes as keys (e.g. eng,

ita, deu), and the actual text in each language as values.

The example below illustrates how to represent the field name in German, English, and Italian.

{
 ...
 "name": {
 "deu": "Mein name",
 "eng": "My Name",
 "ita": "Il mio nome"
 },
 ...
}

The language codes used in the aforementioned objects are those defined in ISO 639-3, which can be

found at https://iso639-3.sil.org/code_tables/639/.

The table below contains some examples of languages and their respective ISO 639-3 codes:

Language ISO-639-3

German deu

English eng

Italian ita

Ladin lld

French fra

Chinese zho

Spanish spa

Note that a language-specific field should only be added if there is available data. For instance, if only

the English version of a resource’s name is available, it should be represented as:

{
 ...
 "name": {
 "eng": "My Name"
 },
 ...
}

AlpineBits® DestinationData 2022-04 page 64 of 130

https://iso639-3.sil.org/code_tables/639/

6.10. time

A string that contains hours, minutes, and seconds, formatted as hh:mm:ss. Corresponds to full-time in

RFC 3339.

Here is an example:

"23:59:59"

6.11. url

A string containing a valid universal resource identifier (URI), as defined in RFC 3986.

Here are some valid examples provided in the RFC 3986:

ftp://ftp.is.co.za/rfc/rfc1808.txt

http://www.ietf.org/rfc/rfc2396.txt

ldap://[2001:db8::7]/c=GB?objectClass?one

mailto:John.Doe@example.com

news:comp.infosystems.www.servers.unix

tel:+1-816-555-1212

telnet://192.0.2.16:80/

urn:oasis:names:specification:docbook:dtd:xml:4.1.2

AlpineBits® DestinationData 2022-04 page 65 of 130

https://tools.ietf.org/html/rfc3339
https://tools.ietf.org/html/rfc3986

7. Resources

7.1. Basic Resource Schema

7.1.1. Basic Fields

Every resource MUST have the following fields:

• type: a string that identifies the resource’s type within an enumeration of possible values. Non-

nullable. Enumeration.

Its possible values are "agents", "events", "eventSeries", "lifts", "mediaObjects",

"mountainAreas", "snowparks", "skiSlopes", and "venues".

• id: a string that uniquely and persistently identifies the resource within a SERVER. Non-nullable.

Non-empty. Unique.

• attributes: an object containing the resource’s data that does not refer to other resources (e.g.

the name of an event, the length of a slope).

• relationships: an object containing the resource’s data referring to other resources (e.g. the

organizers of an event, the slopes within a mountain area).

In addition, resources MAY have the following fields in certain contexts (see Requests and Responses):

• meta: an object containing metadata of the resource (e.g., the URL representing the resource’s data

provider or a date-time string of the instant of the resource’s last update). Non-empty.

The meta object MAY NOT be present in the resource of creation and update requests when the

data provider is not required by the server.

• links: an object containing the links related to access related resources. Examples include, a link to

the agent resources representing organizers and sponsors of an event, a link to the media object

resources representing multimedia descriptions of a mountain area resource, or a link to the resource

itself, also referred to as self (see Messages and Hypermedia Controls). Non-empty.

The meta object SHALL NOT be present in the resource of creation and update requests.

In the following example, we present an event resource (i.e. a resource of type events) might be

represented as follows:

AlpineBits® DestinationData 2022-04 page 66 of 130

{
 "type": "events",
 "id": "1",
 "meta": {
 "lastUpdate": "2019-11-05T08:15:30-05:00",
 ...
 },
 "attributes": {
 "name": {
 "eng": "My event",
 "ita": "Il mio evento"
 },
 "startDate": "2020-04-01T09:30:00+00:00",
 ...
 },
 "relationships": {
 "organizers": {
 "data": [
 {
 "type": "agents",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/organizer"
 }
 },
 ...
 },
 "links": {
 "self": "https://example.com/2022-04/events/1"
 }
}

Note that each reference to another resource within the data in the relationships object consists

only of a type and an id. The relationships object SHALL NOT contain the actual data of these

resources, but only their references. We refer to the section Relationships Object for the mechanisms on

how to access the actual referenced resource.

Each resource type defines a set of fields that must be present in each of these objects. However, a

specific SERVER, when implementing the AlpineBits® DestinationData, MAY include additional fields,

but it MUST comply to the JSON:API v1.0 standard (e.g., additional metadata fields within the meta
object, or additional resource’s attributes within the attributes object). It is also RECOMMENDED

that the SERVER follow the style of the AlpineBits® DestinationData standard when including

additional fields.

7.1.2. Meta Object

A meta object MUST contain the following fields:

• lastUpdate: a date-time that identifies when a resource was last modified in the SERVER. If no

modifications were made after the resource’s creation, the value in this field will be the creation date.

Nullable.

• dataProvider: a url that identifies the organization responsible for provide the resource’s data to

the SERVER. The data provider field is intended to offer basic data traceability, for example, allowing

users to contact providers regarding questions or issues with a resource’s data. The data provider

field should not be interpreted as the data author, as these two may differ. The data provider may be

the the organization providing the SERVER itself. Non-nullable.

For example, the URL "http://tourism.opendatahub.bz.it/" would be used to represent

that a resource has been modified by the OpenDataHub platform.

An example of meta object is presented below:

AlpineBits® DestinationData 2022-04 page 67 of 130

https://jsonapi.org/format/1.0/

{
 "dataProvider": "http://tourism.opendatahub.bz.it/",
 "lastUpdate": "2019-05-01T08:15:30-05:00"
}

7.1.3. Attributes Object

The attributes object of every resource in this specification MUST contain the following fields:

• abstract: a text object containing a short textual description of the resource. The size of an

abstract in any given language SHOULD be at most 200 characters long. This field SHOULD NOT

contain the same data as in the description field. Nullable.

• description: a text object containing the complete textual description of the resource. If

abstract is not null, this field MUST NOT be null.

• name: a text object containing the complete name of the resource. This field MUST NOT be null if

shortName is not null or if otherwise specified for by a particular resource type.

• shortName: a text object containing a short name of the resource. The size of a short name in any

given language SHOULD be at most 36 characters long. This field SHOULD NOT contain the same

data as in the name field. Nullable.

• url: a url string or a multilingual url object containing language-specific url strings. Nullable if not

otherwise specified.

An example of a URL string:

"https://www.alpinebits.org/events/1"

An example of a multilingual URL object:

{
 "deu": "https://www.alpinebits.org/de/events/1",
 "eng": "https://www.alpinebits.org/en/events/1",
 "ita": "https://www.alpinebits.org/it/events/1"
}

The following object exemplifies the use of the basic attributes defined above for an event resource:

AlpineBits® DestinationData 2022-04 page 68 of 130

{
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": {
 "abstract": {
 "eng": "An event for those who want to implement AlpineBits at their companies.",
 "ita": "Un evento per coloro che vogliono implementare AlpineBits nelle loro
aziende."
 },
 "description": {
 "eng": "A 1-day workshop in which we present and explain the standard, give
implementation suggestions...",
 "ita": "Un workshop da 1 giorno in cui presentiamo e spieghiamo lo standard,
facciamo suggerimenti di implementazione..."
 },
 "name": {
 "eng": "AlpineBits DestinationData workshop for newcomers",
 "ita": "AlpineBits DestinationData workshop per i nuovi membri"
 },
 "shortName": {
 "eng": "DestinationData Workshop",
 "ita": "DestinationData Workshop"
 },
 "url": "https://www.alpinebits.org/events/1"
 ...
 },
 "relationships": { ... },
 "links": { ... }
}

The object below exemplifies an event which only has a name in English and no short name:

{
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": {
 "name": {
 "eng": "AlpineBits DestinationData workshop for newcomers."
 },
 "shortName": null,
 ...
 },
 "relationships": { ... },
 "links": { ... }
}

7.1.4. Relationships Object

The relationships object contains reference objects to one or many resources in every field allowing

for resources to be connected through domain relationship in a modular way (see Relationship in

JSON:API v1.0). Every relationship (i.e., relationship field) within the relationships object MUST

contain either a reference object or null. Every resource type MUST define the relationships within the

relationships object as either Reference to One objects or Reference to Many objects depending on

the semantic of the relationship.

Reference to One

A reference object to one resource MUST contain the following fields:

• data: an object containing the type string and the id string of the referred resource.

• links: an object containing the related field with a string representing the endpoint on which the

referred resource is available.

AlpineBits® DestinationData 2022-04 page 69 of 130

https://jsonapi.org/format/1.0/#document-resource-object-relationships
https://jsonapi.org/format/1.0/#document-resource-object-relationships

In case the resource does not support the endpoint of the related resource, the presence of the field

relates is OPTIONAL.

For example, the Media Objects resource type defines a relationship licenseHolder (see

Relationships) to the agent resource representing the media object’s owner:

{
 "type": "mediaObjects",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": {
 "licenseHolder": {
 "data": {
 "type": "agents",
 "id": "1"
 },
 "links": {
 "related": "https://example.com/2022-04/mediaObjects/1/licenseHolder"
 }
 }
 },
 "links": { ... }
}

In case a resource has no related resource, the reference can be set to null according to the

requirements defined in its resource type. For example, a media object resource that does not refer to an

agent resource as its license holder can be presented as follows:

{
 "type": "mediaObjects",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": {
 "licenseHolder": null
 },
 "links": { ... }
}

Reference to Many

A reference object to many resources MUST contain the following fields:

• "data": an array of objects containing the type string and the id string of each referred resource.

• "links": an object containing the related field with a string representing the endpoint on which

the referred resources are available.

In case the resource does not support the endpoint of the related resource, the presence of the field

relates is OPTIONAL.

For example, the event resource type defines a relationship organizers (see Relationships) to the

agent resources representing the event’s owner:

AlpineBits® DestinationData 2022-04 page 70 of 130

{
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": {
 "organizers": {
 "data": [
 {
 "type": "agents",
 "id": "4"
 },
 {
 "type": "agents",
 "id": "1"
 },
 {
 "type": "agents",
 "id": "9"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mediaObjects/1/licenseHolder"
 }
 },
 ...
 },
 "links": { ... }
}

In case a resource has no related resource, the reference can be set to null according to the

requirements defined in its resource type. For example, a media object resource that does not refer to an

agent resource as its license holder can be presented as follows:

{
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": {
 "organizers": null,
 ...
 },
 "links": { ... }
}

Every resource, with the exception of instances of categories, features, and media objects, MUST

contain the Reference to Many bellow within the relationships object. Of these, categories and

features MUST contain the Reference to Many multimediaDescriptions, and media objects MUST

contain the Reference to Many categories

• categories: a Reference to Many category resources identifying the categories instantiated by the

resource. The values proposed by the standard for each resource type are listed in each resource

section. Non-nullable. Non-empty.

• multimediaDescriptions: a Reference to Many media object resources that illustrates a

resource. Media objects be images, videos, audio, data documents (e.g. csv, json), textual

documents (e.g. doc, pdf), html documents, and so on.

Here is an example of how to use the multimediaDescriptions relationship:

AlpineBits® DestinationData 2022-04 page 71 of 130

{
 "type": "events",
 "id": "1",
 "attributes": { ... },
 "relationships": {
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "alpinebits:inPersonEvent"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 },
 {
 "type": "mediaObjects",
 "id": "2"
 },
 {
 "type": "mediaObjects",
 "id": "3"
 },
],
 "links": {
 "related": "https://example.com/2022-04/events/1/multimediaDescriptions"
 }
 }
 ...
 },
 "links": { ... }
}

7.1.5. Links Object

The links object of instances of every resource type MUST contain the following fields:

• self: a string representing the endpoint on which the container resource is available.

For example, an event resource may be presented as follows:

{
 "type": "events",
 "id": "1",
 "attributes": { ... },
 "relationships": { ... },
 "links": {
 "self": "https://example.com/2022-04/events/1"
 }
}

7.2. Resource Schemas

7.2.1. Agents

A resource that implements the concept of Agent defined in the AlpineBits® DestinationData Ontology.

A JSON object representing such a resource MUST contain the following fields:

AlpineBits® DestinationData 2022-04 page 72 of 130

• type: the constant "agents" that identifies the resource as being of the type agent.

• id: a string that uniquely and persistently identifies the agent within a SERVER. See the definition in

Basic Fields.

• attributes: an object containing the attributes of the agent.

• relationships: an object containing the relationships of the agent to other resources.

• links: an object containing the links related to the agent.

Agent resources are structured in the following way:

{
 "type": "agents",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the agent resource MUST contain the following fields:

• abstract: a text object containing a brief description for the agent. Nullable. See the definition in

Attributes Object.

• contactPoints: an array of contact point objects. Nullable. Non-empty.

• description: a text object containing a description of the agent. Nullable. Conditional Assignment.

See the definition in Attributes Object.

• name: a text object containing the complete name of the agent. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• shortName: a text object containing a short name of the agent. Nullable. See the definition in

Attributes Object.

• url: a url object or string describing the agent, such as a website or a Wikipedia page. Nullable. See

the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

contactPoints Array of contact point Nullable, Non-empty

description text Nullable, Conditional Assignment

name url Non-nullable, Conditional
Assignment

shortName text Nullable

url url Nullable

Relationships

The relationships object of the agent resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the agent. See

Section Categories. Nullable. Non-empty.

AlpineBits® DestinationData 2022-04 page 73 of 130

The standard defines the following disjoint categories for agents:

◦ "alpinebits:person": an agent resource representing a particular person. For instance, an

artist who sings at a concert or a photographer who owns the license of a photo.

◦ "alpinebits:organization": an agent resource representing a public or a private

organization. For instance, a company organizing an event or the owner of a mountain area.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the agent. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example presents an object containing the minimal information required of an agent

resource:

{
 "type": "agents",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "contactPoints": null,
 "description": null,
 "name": {
 "eng": "Free University of Bozen-Bolzano"
 },
 "shortName": null,
 "url": null
 },
 "relationships": {
 "categories": null,
 "multimediaDescriptions": null
 },
 "links": {
 "self": "https://example.com/2022-04/agents/1"
 }
}

asciidoc/examples/agent.min.json

The following example presents an object representing an agent resource:

{
 "type": "agents",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },

AlpineBits® DestinationData 2022-04 page 74 of 130

 "attributes": {
 "abstract": {
 "ita": "La Libera Università di Bolzano sorge in una delle più attraenti regioni
europee...",
 "deu": "Die Freie Universität Bozen befindet sich in einer der attraktivsten
Regionen Europas...",
 "eng": "The Free University of Bozen-Bolzano is located in one of the most
fascinating European regions..."
 },
 "contactPoints": [
 {
 "email": "info@noi.bz.it",
 "telephone": "+39 0471 066 600",
 "address": {
 "street": {
 "ita": "Piazza Università 1"
 },
 "city": {
 "ita": "Bolzano"
 },
 "region": {
 "ita": "Trentino-Alto Adige"
 },
 "country": "IT",
 "zipcode": "39100",
 "complement": {
 "ita": "Ufficio 3.07"
 },
 "categories": [
 "example:main"
]
 },
 "availableHours": {
 "dailySchedules": {
 "2020-12-23": [
 {
 "opens": "08:00:00",
 "closes": "12:00:00"
 }
],
 "2020-12-25": null
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "12:00:00+01:00"
 },
 {
 "opens": "14:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "tuesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "12:00:00+01:00"
 },
 {
 "opens": "14:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "wednesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "12:00:00+01:00"

AlpineBits® DestinationData 2022-04 page 75 of 130

 },
 {
 "opens": "14:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "thursday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "12:00:00+01:00"
 },
 {
 "opens": "14:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "friday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "12:00:00+01:00"
 },
 {
 "opens": "14:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "saturday": null,
 "sunday": null
 }
]
 }
 }
],
 "description": {
 "ita": "La Libera Università di Bolzano sorge in una delle più attraenti regioni
europee, al crocevia tra il mondo economico e culturale tedesco e italiano.",
 "deu": "Die Freie Universität Bozen befindet sich in einer der attraktivsten
Regionen Europas an der Schnittstelle zwischen dem deutschsprachigen und italienischen
Kultur- und Wirtschaftsraum.",
 "eng": "The Free University of Bozen-Bolzano is located in one of the most
fascinating European regions, at the crossroads between the German-speaking and Italian
economies and cultures."
 },
 "name": {
 "ita": "Libera Univeristà di Bolzano",
 "deu": "Freie Universität Bozen",
 "eng": "Free University of Bozen-Bolzano"
 },
 "shortName": {
 "eng": "Unibz"
 },
 "url": "https://www.unibz.it"
 },
 "relationships": {
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "alpinebits:organization"
 }
],
 "links": {
 "related": "https://example.com/2022-04/agents/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"

AlpineBits® DestinationData 2022-04 page 76 of 130

 }
],
 "links": {
 "related": "https://example.com/2022-04/agents/1/multimediaDescriptions"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/agents/1"
 }
}

asciidoc/examples/agent.full.json

7.2.2. Categories

A resource that implements the concept of Category defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "categories" that identifies the resource as being of the type category.

• id: a string that uniquely and persistently identifies the category within a SERVER. This id MUST be

a human-readable string composed of a namespace, identifying the context defining the category

(e.g., the data provider or the standard), and the category name, these two separated by a colon

(i.e., "<namespace>:<categoryname>").

Category id strings MUST be valid against the regular expression below. Examples of categories

listed in this standard include "alpinebits:person" and "alpinebits:organization", as

categories of agents, and "schema:BusinessEvent" as a category of events.

"^([a-z]|[A-Z]|[0-9])+:([a-z]|[A-Z]|[0-9])+$"

• attributes: an object containing the attributes of the category.

• relationships: an object containing the relationships of the category to other resources.

• links: an object containing the links related to the category.

Category resources are structured in the following way:

{
 "type": "categories",
 "id": "example:soccerEvent",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the agent resource MUST contain the following fields:

• abstract: a text object containing a brief description for the category. Nullable. See the definition in

Attributes Object.

• description: a text object containing a description of the category. Nullable. Conditional

Assignment. See the definition in Attributes Object.

AlpineBits® DestinationData 2022-04 page 77 of 130

• name: a text object containing the complete name of the category. Differently from the category’s id,

the category’s name serves no identification purpose, but only description. Therefore, the category’s

name SHOULD be a human-readable text friendly to end users. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• namespace: a string containing the namespace that prefixes the category’s id. The namespace

identifies the context where a category is defined. For instance, the namespace for the category

"alpinebits:person", which is defined in this standard, is "alpinebits". Non-nullable. Non-

empty.

A SERVER SHALL NOT use alpinebits as the namespace of a category it defines.

A SERVER SHOULD adopt a single namespace for all categories it defines.

An example of a non-standardized category is "unibz:academic", which could represent a

category defined by the Free University of Bozen-Bolzano (acting as a SERVER) that classifies

events that its students can attend.

• resourceTypes: an array of strings containing the resource types that the category is applicable to.

For example, the value of resourceTypes for the category "alpinebits:person" is [
"agents"], since this category exclusively applies to resources with the type "agents". Non-

nullable. Non-empty.

• shortName: a text object containing a short name of the category. Nullable. See the definition in

Attributes Object.

• url: a url object or string describing the category, such as a website or a Wikipedia page. Nullable.

See the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

description text Nullable, Conditional Assignment

name text Non-nullable, Conditional
Assignment

namespace text Non-nullable, Conditional
Assignment

resourceTypes Array of string Non-nullable, Non-empty

shortName text Nullable

url url Nullable

Relationships

The relationships object of the agent resource MUST contain the following fields:

• children: a Reference to Many category resources that specialize the category. Every instance of

a child category is also an instance of the referring category. Every category listed as child MUST

refer back to the referring category as its parent category (i.e., inverse relations). Conditional

assignment. Nullable. Non-empty.

For example, if the category "example:sportsEvent" refers to the category

"example:soccerEvent" as its child, every resource that instantiates

"example:soccerEvent" also instantiates the category "example:sportsEvent".

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the category. See Section multimediaDescriptions. Nullable. Non-empty.

• parents: a Reference to Many category resources that are specialized by the category. Every

instance of the referring category is also an instance of the parent category. Every category listed as

AlpineBits® DestinationData 2022-04 page 78 of 130

parent MUST refer back to the referring category as its child category (i.e., inverse relations).

Conditional assignment. Nullable. Non-empty.

For example, if the category "example:modernArtEvent" refers to the category

"example:artEvent" as its parent, every resource that instantiates

"example:modernArtEvent" also instantiates the category "example:artEvent".

A summary of the relationships is presented in the table below:

Field Type Constraints

children Reference to Many object to
Categories

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

parents Reference to Many object to
Categories

Nullable, Non-empty

Links

The links object of category resources MUST contain the following fields:

• self: a string representing the endpoint on which the container resource is available. Non-nullable.

• resources: a object where the key-value pairs contains URLs for retrieving resources that

instantiate the category. The object MUST include key for each string in the resourceTypes
attribute array, and the corresponding value in the pair is the endpoint for that resource type.

Whenever supported, a filter for the category MUST be included (see example below). Non-nullable.

For example, the links object of a category resource may be presented as follows:

{
 "type": "categories",
 "id": "alpinebits:person",
 "attributes": {
 "resourceTypes": ["agents"],
 ...
 },
 "relationships": { ... },
 "links": {
 "self": "https://example.com/2022-04/categories/alpinebits:person",
 "resources": {
 "agents": "https://example.com/2022-
04/agents?filter[category][any]=alpinebits:person"
 }
 }
}

Examples

The following example presents an object containing the minimal information required of a category

resource:

AlpineBits® DestinationData 2022-04 page 79 of 130

{
 "type": "categories",
 "id": "example:temporarilyRestricted",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "description": null,
 "name": {
 "eng": "Temporarily Restricted"
 },
 "namespace": "example",
 "resourceTypes": ["venues"],
 "shortName": null,
 "url": null
 },
 "relationships": {
 "children": null,
 "multimediaDescriptions": null,
 "parents": null
 },
 "links": {
 "self": "https://example.com/2022-04/categories/example:temporarilyRestricted",
 "resources": {
 "venues": "https://example.com/2022-
04/venues?filter[categories][any]=example:temporarilyRestricted"
 }
 }
}

asciidoc/examples/category.min.json

The following example presents an object representing a category resource:

{
 "type": "categories",
 "id": "example:soccerEvent",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2022-04-01T08:00:00+02:00"
 },
 "attributes": {
 "abstract": {
 "ita": "Un evento sportivo legato al calcio.",
 "deu": "Ein Sportereignis, das mit Fußball zu tun hat.",
 "eng": "A sports event related to soccer."
 },
 "description": {
 "ita": "Un evento sportivo legato al calcio, per esempio una partita di calcio o un
incontro con i giocatori.",
 "deu": "Ein Sportereignis mit Bezug zum Fußball, z. B. ein Fußballspiel oder ein
Meet-and-Greet mit Spielern.",
 "eng": "A sports event related to soccer, for example a soccer match or a meet-and-
greet with players."
 },
 "name": {
 "ita": "Evento di Calcio",
 "deu": "Fußball-Event",
 "eng": "Soccer Event"
 },
 "namespace": "example",
 "resourceTypes": ["events"],
 "shortName": {
 "eng": "Soccer Event"
 },

AlpineBits® DestinationData 2022-04 page 80 of 130

 "url": "https://en.wikipedia.org/wiki/Association_football"
 },
 "relationships": {
 "children": {
 "data": [
 {
 "type": "categories",
 "id": "example:sub19SoccerMatch"
 }
],
 "links": {
 "related": "https://example.com/2022-04/categories/example:soccerEvent/children"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-
04/categories/example:soccerEvent/multimediaDescriptions"
 }
 },
 "parents": {
 "data": [
 {
 "type": "categories",
 "id": "schema:SportsEvent"
 }
],
 "links": {
 "related": "https://example.com/2022-04/categories/example:soccerEvent/parents"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/categories/example:soccerEvent",
 "resources": {
 "events": "https://example.com/2022-
04/events?filter[categories][any]=example:soccerEvent"
 }
 }
}

asciidoc/examples/category.full.json

7.2.3. Events

A resource that implements the concept of Event defined in the AlpineBits® DestinationData Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "events" that identifies the resource as being of the type event.

• id: a string that uniquely and persistently identifies the event within a SERVER. See the definition in

Basic Fields.

• attributes: an object containing the attributes of the event.

• relationships: an object containing the relationships of the event to other resources.

• links: an object containing the links related to the event.

An event resource is structured as follows:

AlpineBits® DestinationData 2022-04 page 81 of 130

{
 "type": "events",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of an event resource MUST contain the following fields:

• abstract: a text object containing a brief description of the event. Nullable. See the definition in

Attributes Object.

• description: a text object containing a description of the event. Nullable. Conditional Assignment.

See the definition in Attributes Object.

• endDate: a string, formatted as date or date-time, representing when the event is planned to end.

This field can only be null if startDate is defined.

• inPersonCapacity: an integer representing the total number of individuals that can attend the

event in-person. This field can only be assigned in events having the one of the following categories:

"alpinebits:inPersonEvent", or "alpinebits:hybridEvent". Nullable. Positive integer.

Conditional assignment.

• name: a text object containing the complete name of the event. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• onlineCapacity: an integer representing the total number of individuals that can attend the event

virtually. This field can only be assigned in events having the one of the following categories:

"alpinebits:virtualEvent", or "alpinebits:hybridEvent". Nullable. Positive integer.

Conditional assignment.

• participationUrl: a url object or string containing the URL for virtual event attendance. This field

can only be assigned in events having the one of the following categories:

"alpinebits:virtualEvent", or "alpinebits:hybridEvent". Nullable. Conditional

assignment.

• recorded: a boolean value indicated whether the event will be recorded. Nullable.

• registrationUrl: a url object or string containing the URL for event registration. Nullable.

• shortName: a text object containing a short name of the event. Nullable. See the definition in

Attributes Object.

• startDate: a string, formatted as date or date-time, representing when the event is planned to

start. This field can only be null if endDate is defined.

• status: a string representing the current status of the event. Nullable. The possible values for this

field are the following enumerated values:

◦ published: the event has been published. It may or may not have happened.

◦ canceled: the event has been canceled. Events can only be canceled before they have started.

• url: a url object or string describing the event, such as a website or a Wikipedia page. Nullable. See

the definition in Attributes Object.

A summary of the attributes is presented in the table below:

AlpineBits® DestinationData 2022-04 page 82 of 130

Field Type Constraints

abstract text Nullable

description text Nullable

endDate date or date-time Nullable, Conditional Assignment

inPersonCapacity integer Nullable, Greater than Zero,
Conditional Assignment

name text Non-Nullable

onlineCapacity integer Nullable, Greater than Zero,
Conditional Assignment

participationUrl url Nullable, Conditional Assignment

recorded boolean Nullable

registrationUrl url Nullable

shortName text Nullable

startDate date or date-time Nullable, Conditional Assignment

status string Nullable, Enumeration

url url Nullable

Relationships

The relationships object of an event resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the event. See

Section Categories. Non-nullable. Non-empty.

The standard recommends the use of event types defined in Schema.org, which are identified by the

schema namespace: "schema:BusinessEvent", "schema:ChildrensEvent",

"schema:ComedyEvent", "schema:CourseInstance", "schema:DanceEvent",

"schema:DeliveryEvent", "schema:EducationEvent", "schema:EventSeries",

"schema:ExhibitionEvent", "schema:Festival", "schema:FoodEvent",

"schema:Hackathon", "schema:LiteraryEvent", "schema:MusicEvent",

"schema:PublicationEvent", "schema:SaleEvent", "schema:ScreeningEvent",

"schema:SocialEvent", "schema:SportsEvent", "schema:TheaterEvent",

"schema:VisualArtsEvent".

Additionally, the standard defines the three disjoint categories for events where every event MUST

be assigned with exactly one of them:

◦ "alpinebits:inPersonEvent": an event resource representing a event planned for

exclusive in-person attendance.

◦ "alpinebits:virtualEvent": an event resource representing a event planned for exclusive

virtual attendance.

◦ "alpinebits:hybridEvent": an event resource representing a event planned for both in-

person and virtual attendance.

• contributors: a Reference to Many agent resources (see Agents), which identifies the agents

expected to participate in the event, such as a speaker who will give a talk or a musician who will

perform at a concert. Contributors do not include those attending the event. Nullable. Non-empty.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the event. See Section multimediaDescriptions. Nullable. Non-empty.

• organizers: a Reference to Many agent resources (see Agents) identifying the persons or

organizations responsible for organizing the event. Non-nullable. Non-empty.

• publisher: a Reference to One agent resource (see Agents) who originally provided the data about

the event. The publisher is not the organization who manages the system where the data was

AlpineBits® DestinationData 2022-04 page 83 of 130

https://schema.org/Event#subtypes

originally inserted, but the organization actually provided the data. Non-nullable.

• series: a Reference to One event series resource (see Event Series) of which the event is an

edition of. For instance, the Südtirol Jazz Festival 2020 is an edition of the Südtirol Jazz Festival.

Nullable.

Not that sub-events do not share the same series as the whole, but they may be editions of unrelated

event series. For example, the "South Tyrol Jazz Festival 2021" may be an edition of the "South Tyrol

Jazz Festival" series, while the presentation of "András Dés Rangers on 04/07/2021", its sub-event,

may be an edition of the "András Dés Rangers European Tour 2021".

• sponsors: a Reference to Many agent resources (see Agents) identifying the persons or

organizations who are sponsoring the event. Nullable. Non-empty.

• subEvents: a Reference to Many event resources (see Events) identifying the parts of the event.

For instance, a festival may consist of several concerts and a conference may consist of several

presentations and a keynote. Nullable. Non-empty.

There SHALL NOT be a circular composition of events. For instance, if X is a sub-event of Y, and Y is

a sub-event of Z, Z SHALL NOT be a sub-event of X.

Note that sub-events are not restricted to the temporal boundaries of their parent events. For

instance, a conference that starts on 15/03/2020 and ends on 20/03/2020 may have, as a sub-event,

a pre-conference meeting that is scheduled for the 14/03/2020.

• venues: a Reference to Many venue resources (see Venues) identifying where the event will

happen. This field is non-nullable in events having the one of the following categories:

"alpinebits:inPersonEvent", or "alpinebits:hybridEvent". Nullable. Non-empty.

Conditional Assignment.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Non-Nullable, Non-empty

contributors Reference to Many object to
Agents

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

organizers Reference to Many object to
Agents

Non-Nullable, Non-empty

publisher Reference to One object to
Agents

Non-Nullable

series Reference to One object to Event
Series

Nullable

sponsors Reference to Many object to
Agents

Nullable, Non-empty

subEvents Reference to Many object to
Events

Nullable, Non-empty

venues Reference to Many object to
Venues

Nullable, Non-empty, Conditional
Assignment

Links

See the definition of the links object in Links Object.

Examples

The following example contains the minimal information required for an event resource:

AlpineBits® DestinationData 2022-04 page 84 of 130

{
 "type": "events",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "name": {
 "eng": "Südtirol Jazz Festival 2018"
 },
 "shortName": null,
 "description": null,
 "abstract": null,
 "startDate": "2018-06-29T00:00:00+00:00",
 "endDate": null,
 "url": null,
 "status": null,
 "inPersonCapacity": null,
 "onlineCapacity": null,
 "participationUrl": null,
 "recorded": null,
 "registrationUrl": null
 },
 "relationships": {
 "series": null,
 "publisher": {
 "data": {
 "type": "agents",
 "id": "1"
 },
 "links": {
 "related": "https://example.com/2022-04/events/1/publisher"
 }
 },
 "organizers": {
 "data": [
 {
 "type": "agents",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/organizers"
 }
 },
 "sponsors": null,
 "contributors": null,
 "categories": {
 "data": {
 "type": "categories",
 "id": "alpinebits:inPersonEvent"
 },
 "links": {
 "related": "https://example.com/2022-04/events/1/categories"
 }
 },
 "multimediaDescriptions": null,
 "venues": {
 "data": [
 {
 "type": "venues",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/venues"
 }
 },
 "subEvents": null

AlpineBits® DestinationData 2022-04 page 85 of 130

 },
 "links": {
 "self": "https://example.com/2022-04/events/1"
 }
}

examples/event.min.json

The following example illustrates the fields defined for event resources:

{
 "type": "events",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "name": {
 "eng": "Südtirol Jazz Festival 2020",
 "deu": "Südtirol Jazz Festival 2020",
 "ita": "Südtirol Jazz Festival 2020"
 },
 "shortName": {
 "eng": "Südtirol Jazz Festival 2020"
 },
 "description": {
 "deu": "Beim Südtirol Jazzfestival Alto Adige wagen sich Solisten und Ensembles
nicht nur in schwindelerregende musikalische „Höhen“ vor, sondern besteigen, mit ihren
Instrumenten im Gepäck, sogar „echte“ Berge und bespielen dabei eine atemberaubende alpine
Landschaft. Das Festival selbst beschreitet oft ganz neue Wege: selbstbewusst und sich
mitunter über zerklüftete Spalten herantastend, versucht es in neue Klanglandschaften
vorzudringen. Mainstream und Konzertsäle sind beim Südtirol Jazzfestival Alto Adige vom
Aussterben bedroht...."
 },
 "abstract": {
 "deu": "Das Südtirol Jazzfestival Alto Adige ist ein in Südtirol stattfindendes
Musikfestival für Jazz und experimentelle Musik."
 },
 "startDate": "2020-06-26T21:00:00+00:00",
 "endDate": "2020-07-07T23:30:00+00:00",
 "url": "https://www.suedtiroljazzfestival.com/",
 "status": "published",
 "inPersonCapacity": 1000,
 "onlineCapacity": 10000,
 "participationUrl": "https://www.example-streaming-site.com/asdeZCawdeGfdg44fas",
 "recorded": true,
 "registrationUrl": "https://www.example-tickets-site.com/asdeZCawdeGfdg44fas"
 },
 "relationships": {
 "series": {
 "data": {
 "type": "eventSeries",
 "id": "1"
 },
 "links": {
 "related": "https://example.com/2022-04/events/1/eventSeries"
 }
 },
 "publisher": {
 "data": {
 "type": "agents",
 "id": "1"
 },
 "links": {
 "related": "https://example.com/2022-04/events/1/publisher"
 }
 },

AlpineBits® DestinationData 2022-04 page 86 of 130

 "organizers": {
 "data": [
 {
 "type": "agents",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/organizers"
 }
 },
 "sponsors": {
 "data": [
 {
 "type": "agents",
 "id": "3"
 },
 {
 "type": "agents",
 "id": "4"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/sponsors"
 }
 },
 "contributors": {
 "data": [
 {
 "type": "agents",
 "id": "5"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/contributors"
 }
 },
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "alpinebits:hybridEvent"
 },
 {
 "type": "categories",
 "id": "schema:MusicEvent"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 },
 {
 "type": "mediaObjects",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/multimediaDescriptions"
 }
 },
 "venues": {
 "data": [
 {

AlpineBits® DestinationData 2022-04 page 87 of 130

 "type": "venues",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/venues"
 }
 },
 "subEvents": {
 "data": [
 {
 "type": "events",
 "id": "2"
 },
 {
 "type": "events",
 "id": "3"
 }
],
 "links": {
 "related": "https://example.com/2022-04/events/1/subEvents"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/events/1"
 }
}

examples/event.full.json

7.2.4. Event Series

A resource that implements the concept of Event Series defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "eventSeries" that identifies the resource as being of the type event series.

• id: a string that uniquely and persistently identifies the event series within a SERVER. See the

definition in Basic Fields.

• attributes: an object containing the attributes of the event series.

• relationships: an object containing the relationships of the event series to other resources.

• links: an object containing the links related to the event series.

Event series resources are structured in the following way:

{
 "type": "eventSeries",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the event resource MUST contain the following fields:

AlpineBits® DestinationData 2022-04 page 88 of 130

• abstract: a text object containing a brief description for the event series. Nullable. See the

definition in Attributes Object.

• description: a text object containing a description of the event series. Nullable. Conditional

Assignment. See the definition in Attributes Object.

• frequency: a string representing how often editions of the event series are organized according to

an enumeration of possible values. Nullable. Enumeration.

For example, event series with the frequency field set to "weekly" may include street markets

and guided city tours, while event series with the frequency field set to "yearly" may include

Südtirol Jazz Festival or Flower Festival.

If set, the frequency field MUST be assigned one of the following values:

◦ daily: when editions of the event series are organized every day, such as the daily street

market of Bolzano.

◦ weekly: when editions of the event series are organized every week, such as the weekly

farmers' market of Bolzano.

◦ monthly: when editions of the event series are organized every month, such as a flea market

organized every month.

◦ bimonthly: when editions of the event series are organized every two months.

◦ quarterly: when editions of the event series are organized every three months.

◦ annual: when editions of the event series are organized every year, such as the Südtirol Jazz

Festival or Bolzano’s Christmas Market.

◦ biennial: when editions of the event series are organized every two years.

◦ triennial: when editions of the event series are organized every three years.

• name: a text object containing the complete name of the event series. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• shortName: a text object containing a short name of the event series. Nullable. See the definition in

Attributes Object.

• url: a url object or string describing the event series, such as a website or a Wikipedia page.

Nullable. See the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

description text Nullable, Conditional Assignment

frequency string Nullable, Enumeration

name url Non-nullable, Conditional
Assignment

shortName text Nullable

url url Nullable

Relationships

The relationships object of an event series resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the event series. See

Section Categories. Nullable. Non-empty.

No category is pre-defined by the standard.

• editions: a Reference to Many event resources (see Events) that are editions of the event series.

Nullable. Non-empty.

Note that no two editions of an event series can be a sub-event of the other.

AlpineBits® DestinationData 2022-04 page 89 of 130

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the event series. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

editions Reference to Many object to
Events

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example presents an object containing the minimal information required of an event series

resource:

{
 "type": "eventSeries",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "description": null,
 "frequency": null,
 "name": {
 "eng": "Südtirol Jazz Festival"
 },
 "shortName": null,
 "url": null
 },
 "relationships": {
 "categories": null,
 "multimediaDescriptions": null,
 "editions": null
 },
 "links": {
 "self": "https://example.com/2022-04/eventSeries/1"
 }
}

asciidoc/examples/eventseries.min.json

The following example presents an object representing an event series resource:

{
 "type": "eventSeries",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "abstract": {
 "eng": "The Südtirol Jazzfestival Alto Adige was held for the first time in 1982
under the name of “Jazz Summer”..."

AlpineBits® DestinationData 2022-04 page 90 of 130

 },
 "description": {
 "eng": "The Südtirol Jazzfestival Alto Adige was held for the first time in 1982
under the name of “Jazz Summer”, which went on to become “Jazz & Other”. While in the
early years the concerts were played only in Bolzano itself, today the festival stretches
throughout the whole of South Tyrol and beyond."
 },
 "frequency": "annual",
 "name": {
 "eng": "Südtirol Jazz Festival",
 "ita": "Südtirol Jazz Festival",
 "deu": "Südtirol Jazz Festival"
 },
 "shortName": {
 "eng": "Südtirol Jazz Festival"
 },
 "url": "https://www.suedtiroljazzfestival.com/"
 },
 "relationships": {
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "example:festival"
 }
],
 "links": {
 "related": "https://example.com/2022-04/eventSeries/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/eventSeries/1/multimediaDescriptions"
 }
 },
 "editions": {
 "data": [
 {
 "type": "events",
 "id": "1"
 },
 {
 "type": "events",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/eventSeries/1/editions"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/eventSeries/1"
 }
}

asciidoc/examples/eventseries.full.json

7.2.5. Features

A resource that implements the concept of Feature defined in the AlpineBits® DestinationData

Ontology.

AlpineBits® DestinationData 2022-04 page 91 of 130

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "features" that identifies the resource as being of the type feature.

• id: a string that uniquely and persistently identifies the feature within a SERVER. This id MUST be a

human-readable string composed of a namespace, identifying the context defining the feature (e.g.,

the SERVER or the standard), and the feature name, these two separated by a colon (i.e.,

"<namespace>:<featurename>").

Feature id strings MUST be valid against the regular expression below.

"^([a-z]|[A-Z]|[0-9])+:([a-z]|[A-Z]|[0-9])+$"

• attributes: an object containing the attributes of the feature.

• relationships: an object containing the relationships of the features to other resources.

• links: an object containing the links related to the feature.

Feature resources are structured in the following way:

{
 "type": "features",
 "id": "example:snowparkRamp",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the agent resource MUST contain the following fields:

• abstract: a text object containing a brief description for the feature. Nullable. See the definition in

Attributes Object.

• description: a text object containing a description of the feature. Nullable. Conditional

Assignment. See the definition in Attributes Object.

• name: a text object containing the complete name of the feature. Differently from the feature’s id, its

name serves no identification purpose, but only description. Therefore, the name SHOULD be a

human-readable text friendly to end users. Non-nullable. Conditional Assignment. See the definition

in Attributes Object.

• namespace: a string containing the namespace that prefixes the feature’s id. The namespace

identifies the context where a feature is defined. For instance, a SERVER may define the features

"example:snowparkRamp" and "example:snowparkRail" under the namespace
"example". Non-nullable. Non-empty.

A SERVER SHALL NOT use alpinebits as the namespace of a feature it defines.

A SERVER SHOULD adopt a single namespace for all features it defines.

• resourceTypes: an array of strings containing the resource types that can present the feature. For

example, the value of resourceTypes for the feature "example:snowparkRamp" is [
"snowpark"]. At the moment, the standard only accounts for features of snowparks. Non-nullable.

Non-empty.

• shortName: a text object containing a short name of the feature. Nullable. See the definition in

Attributes Object.

AlpineBits® DestinationData 2022-04 page 92 of 130

• url: a url object or string describing the feature, such as a website or a Wikipedia page. Nullable.

See the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

description text Nullable, Conditional Assignment

name text Non-nullable, Conditional
Assignment

namespace text Non-nullable, Conditional
Assignment

resourceTypes Array of string Non-nullable, Non-empty

shortName text Nullable

url url Nullable

Relationships

The relationships object of the agent resource MUST contain the following fields:

• children: a Reference to Many feature resources that specialize the feature. Every resource

presenting a child feature also must also present the referring feature. Every feature listed as child

MUST refer back to the referring feature as its parent feature (i.e., inverse relations). Conditional

assignment. Nullable. Non-empty.

For example, if the feature "example:snowparkRamp" refers to the feature

"example:snowboardingRamp" as its child, every resource that presents

"example:snowboardingRamp" also presents the feature "example:snowparkRamp".

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the feature. See Section multimediaDescriptions. Nullable. Non-empty.

• parents: a Reference to Many feature resources that are specialized by the feature. Every resource

presenting the referring feature must also present the parent feature. Every feature listed as parent

MUST refer back to the referring feature as its child feature (i.e., inverse relations). Conditional

assignment. Nullable. Non-empty.

For example, if the feature "example:snowboardingJib" refers to the feature

"example:snowparkRail" as its parent, every resource that presents

"example:snowboardingJib" also presents the feature "example:snowparkRail".

A summary of the relationships is presented in the table below:

Field Type Constraints

children Reference to Many object to
Features

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

parents Reference to Many object to
Features

Nullable, Non-empty

Links

The links object of feature resources MUST contain the following fields:

• self: a string representing the endpoint on which the container resource is available. Non-nullable.

• resources: a object where the key-value pairs contains URLs for retrieving resources that present

AlpineBits® DestinationData 2022-04 page 93 of 130

the feature. The object MUST include key for each string in the resourceTypes attribute array, and

the corresponding value in the pair is the endpoint for that resource type. Whenever supported, a

filter for the feature MUST be included (see example below). Non-nullable.

For example, the links object of a feature resource may be presented as follows:

{
 "type": "features",
 "id": "example:snowparkRail",
 "attributes": {
 "resourceTypes": ["snowparks"],
 ...
 },
 "relationships": { ... },
 "links": {
 "self": "https://example.com/2022-04/features/example:snowparkRail",
 "resources": {
 "snowparks": "https://example.com/2022-
04/snowparks?filter[features][any]=example:snowparkRail"
 }
 }
}

Examples

The following example presents an object containing the minimal information required of a feature

resource:

{
 "type": "features",
 "id": "example:snowparkRamp",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "description": null,
 "name": {
 "eng": "Snowpark Ramp"
 },
 "namespace": "example",
 "resourceTypes": ["snowparks"],
 "shortName": null,
 "url": null
 },
 "relationships": {
 "children": null,
 "multimediaDescriptions": null,
 "parents": null
 },
 "links": {
 "self": "https://example.com/2022-04/features/example:snowparkRamp",
 "resources": {
 "snowparks": "https://example.com/2022-
04/snowparks?filter[features][any]=example:snowparkRamp"
 }
 }
}

asciidoc/examples/feature.min.json

The following example presents an object representing a feature resource:

{

AlpineBits® DestinationData 2022-04 page 94 of 130

 "type": "features",
 "id": "example:snowparkRamp",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2022-04-01T08:00:00+02:00"
 },
 "attributes": {
 "abstract": {
 "ita": "Una rampa di snowpark è una struttura per la pratica di manovre aeree negli
sport invernali radicali.",
 "deu": "Eine Snowpark-Rampe ist eine Struktur zum Üben von Flugmanövern im radikalen
Wintersport.",
 "eng": "A snowpark ramp is a structure for the practice of aerial maneuvers in
radical winter sports."
 },
 "description": {
 "ita": "Una rampa da snowpark è una struttura presente negli snowpark progettata per
supportare l'esecuzione di manovre aeree negli sport invernali radicali.",
 "deu": "Eine Snowpark-Rampe ist eine Einrichtung in Snowparks, die dazu dient, die
Ausführung von Flugmanövern bei radikalen Wintersportarten zu unterstützen.",
 "eng": "A snowpark ramp is a feature present in snowparks designed to support the
execution of aerial maneuvers in radical winter sports."
 },
 "name": {
 "ita": "Snowpark Ramp",
 "deu": "Snowpark Rampe",
 "eng": "Snowpark Ramp"
 },
 "namespace": "example",
 "resourceTypes": ["snowparks"],
 "shortName": {
 "eng": "Snowpark Ramp"
 },
 "url": "https://en.wikipedia.org/wiki/Terrain_park"
 },
 "relationships": {
 "children": {
 "data": [
 {
 "type": "features",
 "id": "example:snowboardRamp"
 }
],
 "links": {
 "related": "https://example.com/2022-04/features/example:snowparkRamp/children"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-
04/features/example:snowparkRamp/multimediaDescriptions"
 }
 },
 "parents": {
 "data": [
 {
 "type": "features",
 "id": "example:radicalSportsRamp"
 }
],
 "links": {
 "related": "https://example.com/2022-04/features/example:snowparkRamp/parents"
 }
 }

AlpineBits® DestinationData 2022-04 page 95 of 130

 },
 "links": {
 "self": "https://example.com/2022-04/features/example:snowparkRamp",
 "resources": {
 "snowparks": "https://example.com/2022-
04/snowparks?filter[features][any]=example:snowparkRamp"
 }
 }
}

asciidoc/examples/feature.full.json

7.2.6. Lifts

A resource that implements the concept of Lift defined in the AlpineBits® DestinationData Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "lifts" that identifies the resource as being a lift.

• id: a string that uniquely and persistently identifies the lift within a SERVER. See the definition in

Basic Fields.

• attributes: an object containing the attributes of the lift.

• relationships: an object containing the relationships of the lift to other resources.

• links: an object containing the links related to the lift.

A lift resource is structured as follows:

{
 "type": "lifts",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of a lift resource MUST contain the following fields:

• abstract: a text object containing a brief description for the lift. Nullable. See the definition in

Attributes Object.

• address: an address object representing the address of the lift. The address should only be set if

the lift is directly accessible from a public road. In such cases, the address should be that of the base

station. Nullable.

• capacity: a number representing how many persons the lift can transport hourly on average.

Nullable. Positive value.

• description: a text object containing a description of the lift. Nullable. Conditional Assignment.

See the definition in Attributes Object.

• geometries: an array of geometry objects each of which represents the location of the lift in terms

of GPS coordinates. There should be at most one geometry object of each type (e.g. Point,

LineString). Nullable. Non-empty.

• howToArrive: a text object containing instructions on how to arrive at the lift. Nullable.

• length: a number representing the length of the lift in meters. Nullable.

AlpineBits® DestinationData 2022-04 page 96 of 130

• maxAltitude: a number representing the highest elevation point of the lift in meters above sea

level. Nullable.

• minAltitude: a number representing the lowest elevation point of the lift in meters above sea level.

Nullable.

• name: a text object containing the complete name of the lift. Non-nullable. Conditional Assignment.

See the definition in Attributes Object.

• openingHours: an hours specification object representing the hours in which the lift is open to the

public. Nullable.

• personsPerChair: an integer representing the number of persons that fit in a single chair/cabin of

a lift. Nullable. Positive value.

• shortName: a text object containing a short name of the lift. Nullable. See the definition in Attributes

Object.

• url: a url object or string describing the lift, such as a website or a Wikipedia page. Nullable. See the

definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

address address Nullable

capacity number Nullable, Greater than Zero

description text Nullable, Conditional Assignment

geometries Array of geometry Nullable, Non-empty

howToArrive text Nullable

length number Nullable, Unit of Measure,
Greater than Zero

maxAltitude number Nullable, Unit of Measure

minAltitude number Nullable, Unit of Measure

name url Non-nullable, Conditional
Assignment

openingHours hours specification Nullable

personsPerChair integer Nullable, Greater than Zero

shortName text Nullable

url url Nullable

Relationships

The relationships object of a lift resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the lift. See Section

Categories. Nullable. Non-empty.

The standard recommends the following categories for lifts:, "alpinebits:chairlift",

"alpinebits:gondola", "alpinebits:skilift", "alpinebits:cablecar,

"alpinebits:funicular", "alpinebits:magic-carpet", "alpinebits:skibus",

"alpinebits:train".

• connections: a Reference to Many place resources that identify the places that are physically

accessible from the lift, which may include Mountain Areas, other Lifts, Snowparks, and Ski Slopes.

Nullable. Non-empty.

Notice that connections between place resources may not be symmetrical (i.e., bidirectional). For

AlpineBits® DestinationData 2022-04 page 97 of 130

example, a place like a lift may give access to a snowpark, but the snowpark may not give access

back to it.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the lift. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

connections Reference to Many object to
Mountain Areas, Ski Slopes, Lifts,
and Snowparks

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example contains the minimal information required for a lift resource:

AlpineBits® DestinationData 2022-04 page 98 of 130

{
 "type": "lifts",
 "id": "merano2000-l1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "name": {
 "eng": "Ropeway Merano 2000"
 },
 "shortName": null,
 "description": null,
 "abstract": null,
 "url": null,
 "length": null,
 "minAltitude": null,
 "maxAltitude": null,
 "capacity": null,
 "personsPerChair": null,
 "openingHours": null,
 "address": {
 "street": null,
 "city": {
 "eng": "Merano"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "categories": null,
 "complement": null
 },
 "geometries": null,
 "howToArrive": null
 },
 "relationships": {
 "connections": null,
 "categories": null,
 "multimediaDescriptions": null
 },
 "links": {
 "self": "https://example.com/2022-04/lifts/1"
 }
}

asciidoc/examples/lift.min.json

The following example illustrates the fields defined for lift resources:

{
 "type": "lifts",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "name": {
 "deu": "Bergbahn Meran 2000",
 "eng": "Ropeway Merano 2000",
 "ita": "Funivia Merano 2000"
 },
 "shortName": {
 "deu": "Meran 2000",
 "eng": "Merano 2000",
 "ita": "Merano 2000"
 },

AlpineBits® DestinationData 2022-04 page 99 of 130

 "description": {
 "ita": "Situata a pochi minuti dalla città di Merano, la Funivia conduce all’area
sciistica ed escursionistica Merano 2000, un luogo ideale in cui passare una vacanza
all’insegna del movimento e della buona cucina con tutta la famiglia. Grazie al suo clima
mite, l’area offre infinite possibilità per il tempo libero in ogni stagione: impianti di
risalita, sentieri escursionistici facili e numerosi rifugi in cui sostare per assaporare
l’ottima cucina locale in un paesaggio ricco e dominato dalla tranquillità."
 },
 "abstract": {
 "ita": "Situata a pochi minuti dalla città di Merano, la Funivia conduce all’area
sciistica ed escursionistica Merano 2000, un luogo ideale in cui passare una vacanza
all’insegna del movimento e della buona cucina con tutta la famiglia..."
 },
 "url": "https://example.com",
 "length": 3650,
 "minAltitude": 1000,
 "maxAltitude": 2350,
 "capacity": 200,
 "personsPerChair": 10,
 "openingHours": {
 "dailySchedules": {
 "2020-12-25": null
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "tuesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "wednesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "thursday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "friday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "saturday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "sunday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
]
 }

AlpineBits® DestinationData 2022-04 page 100 of 130

]
 },
 "address": {
 "street": {
 "deu": "Naifweg 37",
 "eng": "37 Val di Nova Street",
 "ita": "Via Val di Nova, 37"
 },
 "city": {
 "deu": "Meran",
 "eng": "Merano",
 "ita": "Merano"
 },
 "region": {
 "deu": "Trentino-Südtirol",
 "eng": "Trentino-Alto Adige",
 "ita": "Trentino-Alto Adige"
 },
 "country": "IT",
 "zipcode": "39012",
 "categories": null,
 "complement": null
 },
 "geometries": [
 {
 "type": "LineString",
 "coordinates": [
 [
 11.305682659149168,
 46.66705018437341
],
 [
 11.30692720413208,
 46.667182709603225
],
 [
 11.308064460754393,
 46.667491933875965
]
]
 }
],
 "howToArrive": {
 "ita": "Fino alla stazione a valle della Funivia Merano 2000: dalla stazione
ferroviaria di Merano si raggiunge in pochi minuti la stazione a valle Val di Nova con la
linea urbana 1A. Da Scena c'è il bus vacanze che porta fino alla Val di Nova.",
 "deu": "Zur Talstation der Bergbahn Meran 2000: vom Zugbahnhof Meran erreicht man in
wenigen Minuten die Talstation Naif mit der Buslinie 1A. Von Schenna aus fährt der
Gästebus bis zur Talstation Naif."
 }
 },
 "relationships": {
 "connections": {
 "data": [
 {
 "type": "skiSlopes",
 "id": "1"
 },
 {
 "type": "skiSlopes",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/lifts/1/connections/"
 }
 },
 "categories": {
 "data": [
 {

AlpineBits® DestinationData 2022-04 page 101 of 130

 "type": "categories",
 "id": "alpinebits:cablecar"
 }
],
 "links": {
 "related": "https://example.com/2022-04/lifts/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/lifts/1/multimediaDescriptions/"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/lifts/1"
 }
}

asciidoc/examples/lift.full.json

7.2.7. Media Objects

A resource that implements the concept of Media Object defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields: * type: the constant

"mediaObjects" that identifies the resource as being of the type media object.

• id: a string that uniquely and persistently identifies the media object within a SERVER. See the

definition in Basic Fields.

• attributes: an object containing the attributes of the media object.

• relationships: an object containing the relationships of the media object to other resources.

• links: an object containing the links related to the media object.

A media object resource is structured as follows:

{
 "type": "mediaObjects",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the media object resource MUST contain the following fields:

• abstract: a text object containing a brief description of the media object. Nullable. See the

definition in Attributes Object.

• author: a string that identifies the author of a media object, like an image, a video, or a song.

AlpineBits® DestinationData 2022-04 page 102 of 130

Nullable.

When assigned a value, the author SHOULD follow the example below representing the author’s

name and e-mail contact:

"author": "\"Mary Jane\" <mary.jane@example.com>"

• contentType: a string that represents the media type (formerly known as MIME type) of the media

object. Non-nullable. Regular Expression.

For example, possible values of contentType include yet are not limited to: "video/mp4", for

videos, "image/png", for images, and "audio/mpeg3", for audio.

The allowed media types are defined by IANA. The following regular expression constraints the valid

pattern for the contentType string.

"^(application|audio|font|example|image|message|model|multipart|text|video)/[a-zA-Z0-9-
.+]+$"

• description: a text object containing a description of the media object. Nullable. Conditional

Assignment. See the definition in Attributes Object.

• duration: a number representing the duration of an audio or a video in seconds. Nullable. Positive

value.

If the media object is neither an audio or a video object, i.e., contentType contains a substring

following the pattern

"^(application|font|example|image|message|model|multipart|text)", duration
MUST be set to null.

For example, a short video shared in social platforms may have its duration set to 45 seconds,

while a documentary of an event may have its duration set to 5774 seconds (i.e., 1 hour, 36

minutes and 14 seconds).

• height: a number representing the height of an image or a video in pixels. Nullable. Positive value.

If the media object is neither an image or a video, i.e. contentType contains a substring following

the pattern "^(application|audio|font|example|message|model|multipart|text)",

height MUST be set to null.

For example, the height of a Full-HD video is expected to be 1080 pixels, while the height of a

4K video is expected to be 2160 pixels.

• license: a string that represents the license applied to the media object. The value of this field

SHOULD be a valid license identifier as defined in SPDX License List (e.g. CC-BY-4.0, FreeImage).

Nullable.

• name: a text object containing the complete name of the media object. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• shortName: a text object containing a short name of the media object. Nullable. See the definition in

Attributes Object.

• url: a url string representing the media object’s source. Non-nullable. See the definition in Attributes

Object.

The url string may be used for the exchange of HTML data with the condition that whenever this

HTML data contains some textual description of another resource (i.e., abstract, description,

name, or shortName), the resource MUST have the equivalent text field assigned with non-HTML

(sanitized) data.

In case the url field is used with this purpose, contentType MUST be set to "text/html" and

the URI must be properly encoded. For example:

◦ HTML data:

<div>This is the solution for sending HTML we were looking for!<div/>

AlpineBits® DestinationData 2022-04 page 103 of 130

https://www.iana.org/assignments/media-types/media-types.xhtml
https://spdx.org/licenses/

◦ Encoded string:

"url":
"data:text/html;charset:utf8,%3Cdiv%3EThis%20is%20the%20solution%20for%20sending%20H
TML%20we%20were%20looking%20for%21%3Cdiv%2F%3E"

• width: a number representing the width of an image or a video in pixels. Nullable. Positive value.

If the media object is neither an image or a video, i.e., if contentType contains a substring following

the pattern "^(application|audio|font|example|message|model|multipart|text)",

width MUST be set to null.

For example, the width of a Full-HD video is expected to be 1920 pixels, while the width of a 4K

video is expected to be 3840 pixels.

A summary of the attributes object is presented in the table below:

Field Type Constraints

abstract text Nullable

author string Nullable

contentType string Non-nullable, Regular Expression

description text Nullable, Conditional Assignment

duration number Nullable, Conditional Assignment,
Unit of Measure, Greater than
Zero

height number Nullable, Conditional Assignment,
Unit of Measure, Greater than
Zero

license string Nullable

name text Nullable, Conditional Assignment

shortName text Nullable

url url Non-nullable

width number Nullable, Conditional Assignment,
Unit of Measure, Greater than
Zero

Relationships

The relationships object of a media object resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the media object.

See Section Categories. Nullable. Non-empty.

No category is pre-defined by the standard.

• licenseHolder: a Reference to One agent resource (see agent) who holds the rights over the

media object. Nullable.

A summary of the relationships object is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

licenseHolder Reference to One object to
Agents

Nullable

AlpineBits® DestinationData 2022-04 page 104 of 130

Links

See the definition of the links object in Links Object.

Examples

The following example presents an object containing the minimal information required of a media object

resource:

{
 "type": "mediaObjects",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "author": null,
 "contentType": "audio/mpeg3",
 "description": null,
 "duration": null,
 "height": null,
 "license": null,
 "name": null,
 "shortName": null,
 "url": "https://example.com/audio.mp3",
 "width": null
 },
 "relationships": {
 "categories": null,
 "licenseHolder": null
 },
 "links": {
 "self": "https://example.com/2022-04/mediaObjects/1"
 }
}

asciidoc/examples/mediaobject.min.json

The following example presents an object representing a media object resource:

AlpineBits® DestinationData 2022-04 page 105 of 130

{
 "type": "mediaObjects",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "abstract": {
 "eng": "My first image sent as an example for the API."
 },
 "author": "Leonardo da Vinci",
 "contentType": "image/png",
 "description": {
 "eng": "My first image sent as an example for the API."
 },
 "duration": null,
 "height": 300,
 "license": "FreeImage",
 "name": {
 "ita": "La mia immagine",
 "deu": "Mein bild",
 "eng": "My image"
 },
 "shortName": {
 "eng": "My image"
 },
 "url": "https://example.com/image.png",
 "width": 400
 },
 "relationships": {
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "example:panoramic-photo"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mediaObjects/1/categories"
 }
 },
 "licenseHolder": {
 "data": {
 "type": "agents",
 "id": "0"
 },
 "links": {
 "related": "https://example.com/2022-04/mediaObjects/1/copyrgihtOwner/"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/mediaObjects/1"
 }
}

asciidoc/examples/mediaobject.full.json

7.2.8. Mountain Areas

A resource that implements the concept of Mountain Area defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "mountainAreas" that identifies the resource as being a mountain area.

AlpineBits® DestinationData 2022-04 page 106 of 130

• id: a string that uniquely and persistently identifies the mountain area within a SERVER. See the

definition in Basic Fields.

• attributes: an object containing the attributes of the mountain area.

• relationships: an object containing the relationships of the mountain area to other resources.

• links: an object containing the links related to the mountain area.

A mountain area resource is structured as follows:

{
 "type": "mountainAreas",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of a mountain area resource MUST contain the following fields:

• abstract: a text object containing a brief description of the mountain area. Nullable. See the

definition in Attributes Object.

• area: a number representing the total area, in square meters, of the mountain area. Nullable.

• description: * description: a text object containing a description of the mountain area.

Nullable. Conditional Assignment. See the definition in Attributes Object.

• geometries: an array of geometry objects each of which represents the location of the mountain

area in terms of GPS coordinates. There should be at most one geometry object of each type (e.g.

Point, LineString). Nullable. Non-empty.

• howToArrive: a text object containing instructions on how to arrive at the mountain area. Nullable.

• maxAltitude: a number representing the highest elevation point of the mountain area in meters

above sea level. Nullable.

• minAltitude: a number representing the lowest elevation point of the mountain area in meters

above sea level. Nullable.

• name: a text object containing the complete name of the mountain area. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• openingHours: an hours specification object representing the hours in which the mountain area is

open to the public. Nullable.

• shortName: a text object containing a short name of the mountain area. Nullable. See the definition

in Attributes Object.

• snowCondition: a snow condition object containing the latest reported condition of the snow in the

mountain area. Nullable.

• totalParkLength: an integer representing the total length, in meters, of all snowparks located

within the mountain area. Nullable.

• totalSlopeLength: an integer representing the total length, in meters, of all ski slopes located

within the mountain area. Nullable.

• url: a url object or string describing the mountain area, such as a website or a Wikipedia page.

Nullable. See the definition in Attributes Object.

A summary of the attributes object is presented in the table below:

AlpineBits® DestinationData 2022-04 page 107 of 130

Field Type Constraints

abstract text Nullable

area number Nullable, Unit of Measure,
Greater than Zero

description text Nullable

geometries Array of geometry Nullable, Non-empty

howToArrive text Nullable

maxAltitude number Nullable, Unit of Measure

minAltitude number Nullable, Unit of Measure

name url Non-nullable

openingHours hours specification Nullable

shortName text Nullable

snowCondition snow condition Nullable

totalParkArea number Nullable, Unit of Measure,
Greater than Zero

totalTrailLength number Nullable, Unit of Measure,
Greater than Zero

url url Nullable

Relationships

The relationships object of a mountain area resource MUST contain the following fields:

• areaOwner: a Reference to One agent resource (see Agents) who owns the mountain area.

Nullable.

• categories: a Reference to Many category resources that are instantiated by the mountain area.

See Section Categories. Nullable. Non-empty.

No category is pre-defined by the standard.

• connections: a Reference to Many place resources that identify the places that are physically

accessible from the mountain area, which may include other Mountain Areas, Lifts, Snowparks, and

Ski Slopes. Nullable. Non-empty.

Notice that connections between place resources may not be symmetrical (i.e., bidirectional). For

example, a place like a lift may give access to a snowpark, but the snowpark may not give access

back to it.

• lifts: a Reference to Many lift resources (see Lifts) that identify the lifts located within the mountain

area. Nullable. Non-empty.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the mountain area. See Section multimediaDescriptions. Nullable. Non-empty.

• skiSlopes: a Reference to Many ski slope resources (see Ski Slopes) that identify the slopes

located within the mountain area. Nullable. Non-empty.

• snowparks: a Reference to Many snowpark resources (see Snowparks) that identify the snowparks

located within the mountain area. Nullable. Non-empty.

• subAreas: a Reference to Many mountain area resources (see Mountain Areas) that identify the

mountain areas located within the mountain area. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

AlpineBits® DestinationData 2022-04 page 108 of 130

Field Type Constraints

areaOwner Reference to One object to
Agents

Nullable, Non-empty

categories Reference to Many object to
Categories

Nullable, Non-empty

connections Reference to Many object to
Mountain Areas, Ski Slopes, Lifts,
and Snowparks

Nullable, Non-empty

lifts Reference to Many object to Lifts Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

snowparks Reference to Many object to
Snowparks

Nullable, Non-empty

subAreas Reference to Many object to
Mountain Areas

Nullable, Non-empty

skiSlopes Reference to Many object to Ski
Slopes

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example contains the minimal information required for a mountain area resource:

AlpineBits® DestinationData 2022-04 page 109 of 130

{
 "id": "1",
 "type": "mountainAreas",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "name": {
 "eng": "Meran 2000"
 },
 "shortName": null,
 "description": null,
 "abstract": null,
 "url": null,
 "geometries": null,
 "howToArrive": null,
 "openingHours": null,
 "area": null,
 "minAltitude": null,
 "maxAltitude": null,
 "totalTrailLength": null,
 "totalParkArea": null,
 "totalParkLength": null,
 "snowCondition": null
 },
 "relationships": {
 "areaOwner": null,
 "connections": null,
 "categories": null,
 "multimediaDescriptions": null,
 "lifts": null,
 "skiSlopes": null,
 "snowparks": null,
 "subAreas": null
 },
 "links": {
 "self": "https://example.com/2022-04/mountainAreas/1"
 }
}

asciidoc/examples/mountain.min.json

The following example illustrates the fields defined for mountain area resources:

{
 "id": "1",
 "type": "mountainAreas",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "name": {
 "ita": "Merano 2000",
 "deu": "Meran 2000",
 "eng": "Meran 2000"
 },
 "shortName": {
 "eng": "Meran 2000"
 },
 "description": {
 "deu": "Das Skigebiet Meran 2000 liegt unter dem Berg Ifinger im Burggrafenamt auf
einem Hochplateau oberhalb Meran am Tschögglberg in Südtirol. Es hat 45 km Alpin-Pisten
und reicht von 1670 bis 2300 m Höhe. Von Meran aus ist das Gebiet direkt über die Ifinger-
Seilbahn ab Naif oder durch eine Umlaufseilbahn ab Falzeben erreichbar. Das Skigebiet
erstreckt sich hauptsächlich auf dem Gemeindegebiet von Hafling, berührt aber auch zu den

AlpineBits® DestinationData 2022-04 page 110 of 130

Gemeinden Schenna und Sarntal gehörende Flächen."
 },
 "abstract": {
 "deu": "Das Skigebiet Meran 2000 liegt unter dem Berg Ifinger im Burggrafenamt auf
einem Hochplateau oberhalb Meran am Tschögglberg in Südtirol. Es hat 45 km Alpin-Pisten
und reicht von 1670 bis 2300 m Höhe."
 },
 "url": "https://www.meran2000.com",
 "geometries": [
 {
 "type": "Polygon",
 "coordinates": [
 [
 [
 11.310853958129883,
 46.66958283253642
],
 [
 11.304588317871094,
 46.668817160723044
],
 [
 11.301412582397461,
 46.666696782172096
],
 [
 11.305532455444336,
 46.66457632044435
],
 [
 11.31265640258789,
 46.66646117942096
],
 [
 11.314373016357422,
 46.66869936409677
],
 [
 11.310853958129883,
 46.66958283253642
]
]
]
 }
],
 "howToArrive": {
 "ita": "L'area sciistica ed escursionistica di Merano è situata ai piedi della
montagna Picco Ivigna ed è raggiungibile in pochi minuti dalle destinazioni di Merano,
Avelengo, Scena e Tirolo. La cima di Merano 2000 è raggiungibile con due impianti di
risalita diversi e ha dunque due stazioni a valle, una presso Merano con la Funivia e una
ad Avelengo con la Cabinovia Falzeben.",
 "deu": "Die Sonnenterrasse Merans liegt am Fuße des Ifingers und ist von den
Ferienorten Meran, Hafling, Schenna und Dorf Tirol in wenigen Minuten leicht erreichbar.
Die Bergstation von Meran 2000 kann man mit zwei verschiedenen Aufstiegsanlagen erreichen:
von Meran aus mit der Bergbahn und von Hafling aus mit der Umlaufbahn Falzeben.",
 "eng": "The skiing and hiking area of Merano 2000 is best located next to the
biggest vacation hotspots of South Tyrol and so reachable within few minutes from Merano,
Avelengo, Scena and Tirolo. Two lifts can bring you to the mountain station of Merano
2000: the Ropeway in Merano or the Gondola Falzeben in Avelengo."
 },
 "openingHours": {
 "dailySchedules": {
 "2020-12-25": null
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 {

AlpineBits® DestinationData 2022-04 page 111 of 130

 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "tuesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "wednesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "thursday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "friday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "saturday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "sunday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
]
 }
]
 },
 "area": 36000,
 "minAltitude": 1200,
 "maxAltitude": 2000,
 "totalTrailLength": 4000,
 "totalParkArea": 20000,
 "totalParkLength": 1000,
 "snowCondition": {
 "primarySurface": "powder",
 "secondarySurface": "packed-powder",
 "baseSnow": 50,
 "baseSnowRange": {
 "lower": 40,
 "upper": 60
 },
 "latestStorm": 40,
 "obtainedIn": "2019-12-20",
 "snowOverNight": 5,
 "groomed": true,
 "snowMaking": false
 }
 },
 "relationships": {
 "areaOwner": {
 "data": {
 "type": "agents",
 "id": "1"
 },

AlpineBits® DestinationData 2022-04 page 112 of 130

 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/areaOwner/"
 }
 },
 "connections": {
 "data": [
 {
 "type": "lifts",
 "id": "1"
 },
 {
 "type": "skiSlopes",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/connections/"
 }
 },
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "example:skiarea"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/multimediaDescriptions/"
 }
 },
 "lifts": {
 "data": [
 {
 "type": "lifts",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/lifts/"
 }
 },
 "skiSlopes": {
 "data": [
 {
 "type": "skiSlopes",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/skiSlopes/"
 }
 },
 "snowparks": {
 "data": [
 {
 "type": "snowparks",
 "id": "1"
 }
],

AlpineBits® DestinationData 2022-04 page 113 of 130

 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/snowparks/"
 }
 },
 "subAreas": {
 "data": [
 {
 "type": "mountainAreas",
 "id": "2"
 },
 {
 "type": "mountainAreas",
 "id": "3"
 }
],
 "links": {
 "related": "https://example.com/2022-04/mountainAreas/1/subAreas/"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/mountainAreas/1"
 }
}

asciidoc/examples/mountain.full.json

7.2.9. Ski Slopes

A resource that implements the concept of Ski Slope defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "skiSlopes" that identifies the resource as being of the type ski slope.

• id: a string that uniquely and persistently identifies the ski slope within a SERVER. See the definition

in Basic Fields.

• attributes: an object containing the attributes of the ski slope.

• relationships: an object containing the relationships of the ski slope to other resources.

• links: an object containing the links related to the ski slope.

A ski slope resource is structured as follows:

{
 "type": "skiSlopes",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of a ski slope resource MUST contain the following fields:

• abstract: a text object containing a brief description for the ski slope. Nullable. See the definition in

Attributes Object.

AlpineBits® DestinationData 2022-04 page 114 of 130

• address: an address object representing the main address of the ski slope. The address should

only be set if the ski slope is directly accessible from a public road. Nullable.

• description: a text object containing a description of the ski slope. Nullable. Conditional

Assignment. See the definition in Attributes Object.

• difficulty: an object containing the difficulty level of a ski slope, as in { "eu": "novice",
"us": "beginner" }. Nullable.

The "eu" field refers to the European classification of ski slopes. Its possible values are "novice",

"beginner", "intermediate", and "expert". The "us" field refers to the North American

classification of ski slopes. Its possible values are "beginner", "beginner-intermediate",

"intermediate", "intermediate-advanced", and "expert".

Every such object MUST contain both fields and at least one of them MUST NOT be null. The field

itself, however, is nullable.

• geometries: an array of geometry objects each of which represents the location of the ski slope in

terms of GPS coordinates. There should be at most one geometry object of each type (e.g. Point,

LineString). Nullable. Non-empty.

• howToArrive: a text object containing instructions on how to arrive at the ski slope. Nullable.

• length: a number representing the total length of the ski slope in meters. The computation of the

length (in the case of branching paths, for instance) is determined by the data provider. Nullable.

• maxAltitude: a number representing the highest elevation point of the ski slope in meters above

sea level. Nullable.

• minAltitude: a number representing the lowest elevation point of the ski slope in meters above

sea level. Nullable.

• name: a text object containing the complete name of the ski slope. Non-nullable. See the definition in

Attributes Object.

• openingHours: an hours specification object representing the hours in which the ski slope is open

to the public. Nullable.

• shortName: a text object containing a short name of the ski slope. Nullable. See the definition in

Attributes Object.

• snowCondition: a snow condition object containing the latest reported condition of the snow in the

ski slope.

• url: a url object or string describing the ski slope, such as a website or a Wikipedia page. Nullable.

See the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

address address Nullable

description text Nullable, Conditional Assignment

difficulty object Nullable

geometries Array of geometry Nullable, Non-empty

howToArrive text Nullable

length number Nullable, Unit of Measure,
Greater than Zero

maxAltitude number Nullable, Unit of Measure

minAltitude number Nullable, Unit of Measure

name text Non-nullable, Conditional
Assignment

AlpineBits® DestinationData 2022-04 page 115 of 130

Field Type Constraints

openingHours hours specification Nullable

shortName text Nullable

snowCondition snow condition Nullable

url url Nullable

Relationships

The relationships object of a ski slope resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the ski slope. See

Section Categories. Nullable. Non-empty.

The standard recommends the following categories for ski slopes:, "alpinebits:standard-ski-
slope", "alpinebits:sledge-slope", and "alpinebits:cross-country"

• connections: a Reference to Many place resources that identify the places that are physically

accessible from the mountain area, which may include other Ski Slopes, Lifts, Snowparks, and

Mountain Areas. Nullable. Non-empty.

Notice that connections between place resources may not be symmetrical (i.e., bidirectional). For

example, a place like a lift may give access to a snowpark, but the snowpark may not give access

back to it.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the ski slope. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

connections Reference to Many object to
Mountain Areas, Ski Slopes, Lifts,
and Snowparks

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example contains the minimal information required for a ski slope resource:

AlpineBits® DestinationData 2022-04 page 116 of 130

{
 "type": "skiSlopes",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "name": {
 "eng": "Falzeben I"
 },
 "shortName": null,
 "description": null,
 "abstract": null,
 "url": null,
 "length": null,
 "minAltitude": null,
 "maxAltitude": null,
 "difficulty": null,
 "address": {
 "street": null,
 "city": {
 "eng": "Merano"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "categories": null,
 "complement": null
 },
 "geometries": null,
 "howToArrive": null,
 "openingHours": null,
 "snowCondition": null
 },
 "relationships": {
 "connections": null,
 "categories": null,
 "multimediaDescriptions": null
 },
 "links": {
 "self": "https://example.com/2022-04/skiSlopes/1"
 }
}

asciidoc/examples/skislope.min.json

The following example illustrates the fields defined for ski slope resources:

{
 "type": "skiSlopes",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "name": {
 "ita": "Falzeben I",
 "deu": "Falzeben I",
 "eng": "Falzeben I"
 },
 "shortName": {
 "ita": "Falzeben I"
 },
 "description": {
 "ita": "Falzeben I - Discesa tra i boschi facile, immersa in un panorama da sogno

AlpineBits® DestinationData 2022-04 page 117 of 130

ed ideale per bambini e principianti. Altezza/Lunghezza: 1900 altezza, 3500 m."
 },
 "abstract": {
 "ita": "Falzeben I - Discesa tra i boschi facile, immersa in un panorama da sogno
ed ideale per bambini e principianti."
 },
 "url": "https://example.com",
 "length": 2000,
 "minAltitude": 1500,
 "maxAltitude": 2500,
 "difficulty": {
 "eu": "novice",
 "us": "beginner"
 },
 "address": {
 "street": null,
 "city": {
 "eng": "Merano"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "categories": null,
 "complement": null
 },
 "howToArrive": {
 "ita": " Le fermate più vicine a Falzeben sono: Falzeben è a 41 metri di distanza a
piedi e ci si arriva in 1 minuti di cammino; Villa Schäfer è a 808 metri di distanza a
piedi e ci si arriva in 11 minuti di cammino."
 },
 "geometries": [
 {
 "type": "LineString",
 "coordinates": [
 [
 11.305682659149168,
 46.66705018437341
],
 [
 11.30692720413208,
 46.667182709603225
],
 [
 11.308064460754393,
 46.667491933875965
]
]
 }
],
 "openingHours": {
 "dailySchedules": {
 "2020-12-25": null
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "tuesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "wednesday": [

AlpineBits® DestinationData 2022-04 page 118 of 130

 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "thursday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "friday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "saturday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "sunday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
]
 }
]
 },
 "snowCondition": {
 "primarySurface": "powder",
 "secondarySurface": "packed-powder",
 "baseSnow": 50,
 "baseSnowRange": {
 "lower": 40,
 "upper": 60
 },
 "latestStorm": 40,
 "obtainedIn": "2020-02-01",
 "snowOverNight": 5,
 "groomed": true,
 "snowMaking": false
 }
 },
 "relationships": {
 "connections": {
 "data": [
 {
 "type": "skiSlopes",
 "id": "2"
 },
 {
 "type": "skiSlopes",
 "id": "3"
 },
 {
 "type": "skiSlopes",
 "id": "4"
 },
 {
 "type": "lifts",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/skiSlopes/1/connections/"
 }

AlpineBits® DestinationData 2022-04 page 119 of 130

 },
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "alpinebits:standard-ski-slope"
 }
],
 "links": {
 "related": "https://example.com/2022-04/skiSlopes/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/skiSlopes/1/multimediaDescriptions/"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/skiSlopes/1"
 }
}

asciidoc/examples/skislope.full.json

7.2.10. Snowparks

A resource that implements the concept of Snowpark defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "snowparks" that identifies the resource as being of the type snowpark.

• id: a string that uniquely and persistently identifies the snowpark within a SERVER. See the

definition in Basic Fields.

• attributes: an object containing the attributes of the snowpark.

• relationships: an object containing the relationships of the snowpark to other resources.

• links: an object containing the links related to the snowpark.

A snowpark resource is structured as follows:

{
 "type": "snowparks",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of a snowpark resource MUST contain the following fields:

AlpineBits® DestinationData 2022-04 page 120 of 130

• abstract: a text object containing a brief description for the snowpark. Nullable. See the definition

in Attributes Object.

• address: an address object representing the address of the snowpark. The address should only be

set if the snowpark is directly accessible from a public road. Nullable.

• description: a text object containing a description of the snowpark. Nullable. Conditional

Assignment. See the definition in Attributes Object.

• difficulty: a string describing the difficulty level of a snowpark according to the following

enumerated values:

◦ "beginner"

◦ "intermediate"

◦ "advanced"

◦ "expert"

• geometries: an array of geometry objects each of which represents the location of the snowpark in

terms of GPS coordinates. There should be at most one geometry object of each type (e.g. Point,

LineString). Nullable. Non-empty.

• howToArrive: a text object containing instructions on how to arrive at the snowpark. Nullable.

• length: a number representing the total length of the snowpark in meters. The computation of the

length (in the case of branching paths, for instance) is determined by the data provider. Nullable.

• maxAltitude: a number representing the highest elevation point of the snowpark in meters above

sea level. Nullable.

• minAltitude: a number representing the lowest elevation point of the snowpark in meters above

sea level. Nullable.

• name: a text object containing the complete name of the snowpark. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• openingHours: an hours specification object representing the hours in which the snowpark is open

to the public. Nullable.

• shortName: a text object containing a short name of the snowpark. Nullable. See the definition in

Attributes Object.

• snowCondition: a snow condition object containing the latest reported condition of the snow in the

snowpark.

• url: a url object or string describing the snowpark, such as a website or a Wikipedia page. Nullable.

See the definition in Attributes Object.

A summary of the attributes is presented in the table below:

Field Type Constraints

abstract text Nullable

address address Nullable

description text Nullable, Conditional Assignment

difficulty string Enumeration, Nullable

geometries Array of geometry Nullable, Non-empty

howToArrive string Nullable

length number Nullable, Unit of Measure,
Greater than Zero

maxAltitude number Nullable, Unit of Measure

minAltitude number Nullable, Unit of Measure

name text Non-nullable, Conditional
Assignment

AlpineBits® DestinationData 2022-04 page 121 of 130

Field Type Constraints

openingHours hours specification Nullable

shortName text Nullable

snowCondition snow condition Nullable

url url Nullable

Relationships

The relationships object of a snowpark resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the snowpark. See

Section Categories. Nullable. Non-empty.

No category is pre-defined by the standard.

• connections: a Reference to Many place resources that identify the places that are physically

accessible from the mountain area, which may include other Snowparks, Lifts, Mountain Areas, and

Ski Slopes. Nullable. Non-empty.

Notice that connections between place resources may not be symmetrical (i.e., bidirectional). For

example, a place like a lift may give access to a snowpark, but the snowpark may not give access

back to it.

• features: a Reference to Many feature resources present in a snowpark, such as a ramp or a rail.

See Section Features. Nullable. Non-empty.

No feature is pre-defined by the standard.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the snowpark. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

connections Reference to Many object to
Mountain Areas, Ski Slopes, Lifts,
and Snowparks

Nullable, Non-empty

features Reference to Many object to
Features

Nullable, Non-empty

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

The following example contains the minimal information required for a snowpark resource:

AlpineBits® DestinationData 2022-04 page 122 of 130

{
 "type": "snowparks",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "name": {
 "eng": "Snowpark Merano 2000"
 },
 "shortName": null,
 "description": null,
 "abstract": null,
 "url": null,
 "length": null,
 "minAltitude": null,
 "maxAltitude": null,
 "address": {
 "street": null,
 "city": {
 "eng": "Merano"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "categories": null,
 "complement": null
 },
 "howToArrive": null,
 "difficulty": null,
 "geometries": null,
 "openingHours": null,
 "snowCondition": null
 },
 "relationships": {
 "connections": null,
 "features": null,
 "categories": null,
 "multimediaDescriptions": null
 },
 "links": {
 "self": "https://example.com/2022-04/snowparks/1"
 }
}

asciidoc/examples/snowpark.min.json

The following example illustrates the fields defined for snowpark resources:

{
 "type": "snowparks",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "name": {
 "ita": "Snowpark Merano 2000",
 "deu": "Snowpark Merano 2000",
 "eng": "Snowpark Merano 2000"
 },
 "shortName": {
 "eng": "Snowpark Merano 2000"
 },
 "description": {

AlpineBits® DestinationData 2022-04 page 123 of 130

 "eng": "Located in the rear part of the skiing area on the Oswald-Slope, close to
the Waidmann Alpine Cottage, the SNOWPARK MERANO 2000 awaits brave Snowboarders and
Freestylers. An ambitious project with many kicks, rails, tubes and boxes for newcomers
and pros alike. You can reach the Jump Zone from the mountain station of the Ropeway by
using the chairlift Piffing."
 },
 "abstract": {
 "eng": "Located in the rear part of the skiing area on the Oswald-Slope, close to
the Waidmann Alpine Cottage, the SNOWPARK MERANO 2000 awaits brave Snowboarders and
Freestylers..."
 },
 "url": "https://example.com",
 "length": 1300,
 "minAltitude": 1500,
 "maxAltitude": 2500,
 "address": {
 "street": null,
 "city": {
 "eng": "Merano"
 },
 "region": null,
 "country": "IT",
 "zipcode": null,
 "categories": null,
 "complement": null
 },
 "howToArrive": null,
 "difficulty": "intermediate",
 "geometries": [
 {
 "type": "LineString",
 "coordinates": [
 [
 11.305682659149168,
 46.66705018437341
],
 [
 11.30692720413208,
 46.667182709603225
],
 [
 11.308064460754393,
 46.667491933875965
]
]
 }
],
 "openingHours": {
 "dailySchedules": {
 "2020-12-25": null
 },
 "weeklySchedules": [
 {
 "validFrom": "2020-01-01",
 "validTo": "2020-12-31",
 "monday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "tuesday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "wednesday": [
 {
 "opens": "08:00:00+01:00",

AlpineBits® DestinationData 2022-04 page 124 of 130

 "closes": "18:00:00+01:00"
 }
],
 "thursday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "friday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "saturday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
],
 "sunday": [
 {
 "opens": "08:00:00+01:00",
 "closes": "18:00:00+01:00"
 }
]
 }
]
 },
 "snowCondition": {
 "primarySurface": "frozen-granular",
 "secondarySurface": "packed-powder",
 "baseSnow": 30,
 "baseSnowRange": {
 "lower": 25,
 "upper": 40
 },
 "latestStorm": 5,
 "obtainedIn": "2020-01-14",
 "snowOverNight": 0,
 "groomed": true,
 "snowMaking": false
 }
 },
 "relationships": {
 "connections": {
 "data": [
 {
 "type": "skiSlopes",
 "id": "2"
 },
 {
 "type": "skiSlopes",
 "id": "3"
 }
],
 "links": {
 "related": "https://example.com/2022-04/snowparks/1/connections/"
 }
 },
 "features": {
 "data": [
 {
 "type": "features",
 "id": "example:jib"
 },
 {
 "type": "features",
 "id": "example:pipe"

AlpineBits® DestinationData 2022-04 page 125 of 130

 }
],
 "links": {
 "related": "https://example.com/2022-04/snowparks/1/features"
 }
 },
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "example:free-style"
 }
],
 "links": {
 "related": "https://example.com/2022-04/snowparks/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "2"
 }
],
 "links": {
 "related": "https://example.com/2022-04/snowparks/1/multimediaDescriptions/"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/snowparks/1"
 }
}

asciidoc/examples/snowpark.full.json

7.2.11. Venues

A resource that implements the concept of Venue defined in the AlpineBits® DestinationData

Ontology.

A JSON object representing such a resource MUST contain the following fields:

• type: the constant "venues" that identifies the resource as being of the type venue.

• id: a string that uniquely and persistently identifies the venue within a SERVER. See the definition in

Basic Fields.

• attributes: an object containing the attributes of the venue.

• relationships: an object containing the relationships of the venue to other resources.

• links: an object containing the links related to the venue.

Venue resources are structured in the following way:

{
 "type": "venues",
 "id": "1",
 "meta": { ... },
 "attributes": { ... },
 "relationships": { ... },
 "links": { ... }
}

AlpineBits® DestinationData 2022-04 page 126 of 130

Meta

See the definition of the meta object in Meta Object.

Attributes

The attributes object of the venue resource MUST contain the following fields:

• abstract: a text object containing a brief description of the venue. Nullable. See the definition in

Attributes Object.

• address: an address object containing the address of the venue. Nullable.

• description: a text object containing a description of the venue. Nullable. Conditional Assignment.

See the definition in Attributes Object.

• geometries: an array of geometry objects each of which represents the location of the venue in

terms of GPS coordinates. There should be at most one geometry object of each type (e.g. Point,

LineString). Nullable. Non-empty.

• howToArrive: a text object containing instructions on how to arrive at the venue. Nullable.

• name: a text object containing the complete name of the venue. Non-nullable. Conditional

Assignment. See the definition in Attributes Object.

• shortName: a text object containing a short name of the venue. Nullable. See the definition in

Attributes Object.

• url: a url object or string describing the venue, such as a website or a Wikipedia page. Nullable. See

the definition in Attributes Object.

A summary of the attributes object is presented in the table below:

Field Type Constraints

abstract text Nullable

address address Nullable

description text Nullable, Conditional Assignment

geometries Array of geometry Nullable, Non-empty

howToArrive string Nullable

name text Non-nullable, Conditional
Assignment

shortName text Nullable

url url Nullable

Relationships

The relationships object of a mountain area resource MUST contain the following fields:

• categories: a Reference to Many category resources that are instantiated by the venue. See

Section Categories. Nullable. Non-empty.

No category is pre-defined by the standard.

• multimediaDescriptions: a Reference to Many media object resources (see Media Objects)

that are related to the venue. See Section multimediaDescriptions. Nullable. Non-empty.

A summary of the relationships is presented in the table below:

Field Type Constraints

categories Reference to Many object to
Categories

Nullable, Non-empty

AlpineBits® DestinationData 2022-04 page 127 of 130

Field Type Constraints

multimediaDescriptions Reference to Many object to
Media Objects

Nullable, Non-empty

Links

See the definition of the links object in Links Object.

Examples

he following example presents an object containing the minimal information required of a venue

resource:

{
 "type": "venues",
 "id": "1",
 "meta": {
 "dataProvider": null,
 "lastUpdate": null
 },
 "attributes": {
 "abstract": null,
 "address": null,
 "description": null,
 "geometries": null,
 "howToArrive": null,
 "name": {
 "eng": "Auditorium 1"
 },
 "shortName": null,
 "url": null
 },
 "relationships": {
 "categories": null,
 "multimediaDescriptions": null
 },
 "links": {
 "self": "https://example.com/2022-04/venues/1"
 }
}

asciidoc/examples/venue.min.json

The following example presents an object representing a venue resource:

{
 "type": "venues",
 "id": "1",
 "meta": {
 "dataProvider": "https://example.com",
 "lastUpdate": "2020-04-01T08:00:00+02:00"
 },
 "attributes": {
 "abstract": {
 "eng": "The Auditorium 1 of the Free University of Bozen-Bolzano provides a great
space for keynotes, lectures and presentations."
 },
 "address": {
 "street": {
 "ita": "Piazza Università, 1",
 "deu": "Universitätsplatz 1"
 },
 "city": {
 "deu": "Bozen"
 },

AlpineBits® DestinationData 2022-04 page 128 of 130

 "region": {
 "deu": "Trentino-Südtirol"
 },
 "country": "IT",
 "zipcode": "39100",
 "complement": {
 "deu": "Hauptgebäude"
 },
 "categories": [
 "example:building"
]
 },
 "description": {
 "eng": "The Auditorium 1 of the Free University of Bozen-Bolzano provides a great
space for keynotes, lectures and presentations, being available to host events related
academic, provincial and cultural topics."
 },
 "geometries": [
 {
 "type": "Point",
 "coordinates": [
 11.35087251663208,
 46.49873937419277
]
 }
],
 "howToArrive": {
 "eng": "From the train station, the Free University of Bozen-Bolzano is accessible
in a 5 minutes walk into the historical city center."
 },
 "name": {
 "eng": "Auditorium 1 - Free University of Bozen-Bolzano"
 },
 "shortName": {
 "eng": "Auditorium 1"
 },
 "url": "https://example.com/auditorium-1"
 },
 "relationships": {
 "categories": {
 "data": [
 {
 "type": "categories",
 "id": "example:auditorium"
 }
],
 "links": {
 "related": "https://example.com/2022-04/venues/1/categories"
 }
 },
 "multimediaDescriptions": {
 "data": [
 {
 "type": "mediaObjects",
 "id": "1"
 }
],
 "links": {
 "related": "https://example.com/2022-04/venues/1/multimediaDescriptions"
 }
 }
 },
 "links": {
 "self": "https://example.com/2022-04/venues/1"
 }
}

asciidoc/examples/venue.full.json

AlpineBits® DestinationData 2022-04 page 129 of 130

Appendix A: AlpineBits® DestinationData developer
resources

The AlpineBits® DestinationData development home page is at https://www.alpinebits.org/

destinationdata/. There are resources linked from that page that help test one’s implementation.

Public repositories with schema files and example code snippets are available online at

https://gitlab.com/alpinebits/destinationdata. Contributions are welcome (any programming language).

AlpineBits® DestinationData 2022-04 page 130 of 130

https://www.alpinebits.org/destinationdata/
https://www.alpinebits.org/destinationdata/
https://gitlab.com/alpinebits/destinationdata

	Introduction
	Table of Contents
	1. Introduction
	1.1. Conventions and Definitions

	2. The AlpineBits® DestinationData Ontology
	2.1. Modeling Language: OntoUML
	2.2. Ontology Description
	2.2.1. Categories and Features
	2.2.2. Agent
	2.2.3. Media Object
	2.2.4. Place
	2.2.5. Event, Event Series and Venue
	2.2.6. Mountain Areas
	2.2.7. Trails and Lifts
	2.2.8. Snow Measurement

	3. API Architecture
	3.1. SERVER and CLIENT Responsibilities
	3.2. Messages
	3.2.1. Request Messages
	3.2.2. Success Messages
	3.2.3. Error Messages

	3.3. Authentication
	3.4. Hypermedia Controls
	3.4.1. Action Discovery

	4. Requests and Responses
	4.1. Resource Retrieval
	4.1.1. Pagination
	4.1.2. Sorting
	4.1.3. Random sorting
	4.1.4. Filtering
	4.1.5. Searching
	4.1.6. Sparse Fieldsets
	4.1.7. Inclusion of Related Resources

	4.2. Resource Creation
	4.3. Resource Update
	4.4. Resource Deletion

	5. Routes
	5.1. Base Route
	5.2. Version Routes
	5.3. Resource Routes
	5.3.1. Agent Routes
	5.3.2. Category Routes
	5.3.3. Event Routes
	5.3.4. Event Series Routes
	5.3.5. Feature Routes
	5.3.6. Lift Routes
	5.3.7. Media Object Routes
	5.3.8. Mountain Area Routes
	5.3.9. Ski Slope Routes
	5.3.10. Snowpark Routes
	5.3.11. Venue Routes

	6. Datatypes
	6.1. address
	6.2. contact point
	6.3. date
	6.4. date-time
	6.5. email
	6.6. geometry
	6.6.1. point
	6.6.2. multi-point
	6.6.3. line-string
	6.6.4. multi-line-string
	6.6.5. polygon
	6.6.6. multi-polygon

	6.7. hours specification
	6.8. snow condition
	6.9. text
	6.10. time
	6.11. url

	7. Resources
	7.1. Basic Resource Schema
	7.1.1. Basic Fields
	7.1.2. Meta Object
	7.1.3. Attributes Object
	7.1.4. Relationships Object
	7.1.5. Links Object

	7.2. Resource Schemas
	7.2.1. Agents
	7.2.2. Categories
	7.2.3. Events
	7.2.4. Event Series
	7.2.5. Features
	7.2.6. Lifts
	7.2.7. Media Objects
	7.2.8. Mountain Areas
	7.2.9. Ski Slopes
	7.2.10. Snowparks
	7.2.11. Venues

	Appendix A: AlpineBits® DestinationData developer resources

